Analysis of Thyroid Gland Cytological Images Using Computer Vision
Abstract
The aim of this article is to explore the capabilities of modern neural networks in analyzing cytological whole slide images in svs format in accordance with the Bethesda categorization system. The article presents the results of the proposed neural network models for solving tasks of automatic segmentation and classification of both various types of individual cells and their clusters. For the diagnosis of thyroid cancer using computer vision, the following cell types are identified: Hurthle cells, cells with pseudoinclusions, C-cells, and clusters of cells forming papillary structures, shapeless structures with ordered and unordered cell arrangements. The proposed models have demonstrated their effectiveness in solving tasks related to the intelligent analysis of both whole-slide cytological images and tiled image segmentation. The results obtained for the segmentation of individual cells are as follows: mean Dice coefficient (DC) = 90.9% for pseudoinclusions, DC = 86.2% for Hurthle cells, DC = 90.2% for C-cells. For cell cluster segmentation, the mean Intersection over Union (IoU) is 84%, and DC is 91%. The classification accuracy of cell clusters into three classes is 77.9%.
Full Text:
PDFReferences
Haugen, B.R., Alexander, E.K., Bible, K.C., Doherty, G.M., Mandel, S.J., Nikiforov, Y.E., Pacini, F., Randolph, G.W., Sawka, A.M., Schlumberger, M., Schuff, K.G., Sherman, S.I., Sosa, J.A., Steward, D.L., Tuttle, R.M., Wartofsky, L., 2016. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26, 1–133. https://doi.org/10.1089/thy.2015.0020.
Fridrihsone, I., Strumfa, I., Strumfs, B., Vanags, A., Balodis, D., Jakovlevs, A., Abolins, A., Gardovskis, J., 2018. Thyroid Nodules in Diagnostic Pathology: From Classic Concepts to Innovations, in: Histopathology - An Update. InTech. Available: https://doi.org/10.5772/intechopen.77117.
Russ, G., Bonnema, S.J., Erdogan, M.F., Durante, C., Ngu, R., Leenhardt, L., 2017. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. Available: https://doi.org/10.1159/000478927.
Durante, C., Hegedüs, L., Czarniecka, A., Paschke, R., Russ, G., Schmitt, F., Soares, P., Solymosi, T., Papini, E., 2023. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur. Thyroid J. 12. Available: https://doi.org/10.1530/ETJ-23-0067.
The Bethesda System for Reporting Thyroid Cytopathology, 2023. Available: https://doi.org/10.1007/978-3-031-28046-7.
Maleki, S., Zandvakili, A., Gera, S., Khutti, S.D., Gersten, A., Khader, S.N., 2019. Differentiating Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features from Classic Papillary Thyroid Carcinoma: Analysis of Cytomorphologic Descriptions Using a Novel Machine-Learning Approach. J. Pathol. Inform. 10, 29. Available: https://doi.org/10.4103/jpi.jpi_25_19.
Sanyal, P., Mukherjee, T., Barui, S., Das, A., Gangopadhyay, P., 2018. Artificial Intelligence in Cytopathology: A Neural Network to Identify Papillary Carcinoma on Thyroid Fine-Needle Aspiration Cytology Smears. J. Pathol. Inform. 9, 43. Available: https://doi.org/10.4103/jpi.jpi_43_18.
Guan, Q., Wang, Y., Ping, B., Li, D., Du, J., Qin, Y., Lu, H., Wan, X., Xiang, J., 2019. Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J. Cancer 10, 4876–4882. Available: https://doi.org/10.7150/jca.28769.
Elliott Range, D.D., Dov, D., Kovalsky, S.Z., Henao, R., Carin, L., Cohen, J., 2020. Application of a machine learning algorithm to predict malignancy in thyroid cytopathology. Cancer Cytopathol. 128, 287–295. Available: https://doi.org/10.1002/cncy.22238.
Kezlarian, B., Lin, O., 2021. Artificial Intelligence in Thyroid Fine Needle Aspiration Biopsies. Acta Cytol. 65, 324–329. Available: https://doi.org/10.1159/000512097.
Lozhkin I.A., Mironov A.M., Dunaev M.E., Zaytsev K.S., 2023. Features of image processing of cytological studies of thyroid gland with the use of computer vision. Procedings of of the XIХ International Scientific and Practical Conference "Electronic means and control systems". pp. 305–306.
Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W., 2017. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7, 16878. Available: https://doi.org/10.1038/s41598-017-17204-5.
QuPath: Open source software for digital pathology image analysis. https://qupath.github.io/ (accessed 25 March 2025).
Digital Pathology. Available: https://dpathology.ru/ (accessed 25 March 2025).
Leica Biosystems: Aperio digital pathology software. Available: https://www.leicabiosystems.com/digital-pathology/manage/ (accessed 25 March 2025).
I. Lozhkin, A. Mironov, A.G., 2023. Features of intelligent analysis of images of ultrasound and cytological studies of the thyroid gland. Procedings of of the 8-th International Symposium and Schools for Young Scientists "Physics, Engineering and Technologies for Biomedicine, November 11-15, 2023: Program. pp. 60–61.
Lozhkin I.A., Mironov A.M., Pavlov D.V., Dunaev M.E., 2024. Digital transformation of comprehensive image analysis using computer vision in the diagnosis of thyroid diseases. Proceedings of the International Scientific and Practical Conference "Digital Transformation of Social and Economic Systems". pp. 242–250.
Smith, B., Hermsen, M., Lesser, E., Ravichandar, D., Kremers, W., 2021. Developing image analysis pipelines of whole-slide images: Pre- and post-processing. J. Clin. Transl. Sci. 5, e38. https://doi.org/10.1017/cts.2020.531.
Lozhkin I.A., Zaytsev K.S., Dunaev M.E., Shifman B.M., Abdulkhabirova F.M., 2024. Features of intelligent processing of cytological whole slide images. Int. J. Open Inf. Technol. 12, 84–93.
CVAT: Leading Image & Video Data Annotation Platform. Available: https://www.cvat.ai/ (accessed 25 March 2025).
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.-Y., Dollár, P., Girshick, R., 2023. Segment Anything, in: 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, pp. 3992–4003. Available: https://doi.org/10.1109/ICCV51070.2023.00371.
Ekin Tiu, 2019. Metrics to Evaluate your Semantic Segmentation Model. Towar. Data Sci. Available: https://medium.com/data-science/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2 (accessed 25 March 2025).
Classification and regression metrics. Available: https://education.yandex.ru/handbook/ml/article/metriki-klassifikacii-i-regressii (accessed 25 March 2025).
Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F., 2021. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 555–570. Available: https://doi.org/10.1038/s41551-020-00682-w.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 833–851. Available: https://doi.org/10.1007/978-3-030-01234-2_49.
Tan, M., Le, Q. V., 2019. EfficientNet: Rethinking model scaling for convolutional neural networks, in: 36th International Conference on Machine Learning, ICML 2019.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look Once: Unified, Real-Time Object Detection, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 779–788. Available: https://doi.org/10.1109/CVPR.2016.91.
Terven, J., Córdova-Esparza, D.-M., Romero-González, J.-A., 2023. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 5, 1680–1716. Available: https://doi.org/10.3390/make5040083.
Feng, S.J., Feng, Y., Zhang, X.L., Chen, Y.H., 2023. Deep learning with visual explanations for leakage defect segmentation of metro shield tunnel. Tunn. Undergr. Sp. Technol. 136, 105107. Available: https://doi.org/10.1016/j.tust.2023.105107.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162