An investigation of early and late collapse of language models in medical applications
Abstract
Full Text:
PDF (Russian)References
Cooper N., Scholak T. Perplexed: Understanding when large language models are confused //arXiv preprint arXiv:2404.06634. – 2024
Mezzoudj F., Benyettou A. An empirical study of statistical language models: n-gram language models vs. neural network language models //International Journal of Innovative Computing and Applications. – 2018. – Т. 9. – №. 4. – С. 189-202.
Gritsai, G.M., Khabutdinov, I.A. & Grabovoy, A.V. Stack More LLM’s: Efficient Detection of Machine-Generated Texts via Perplexity Approximation. Dokl. Math. 110 (Suppl 1), S203–S211 (2024): https://doi.org/10.1134/S1064562424602075
Canvas4Everyone. Unraveling the Mystery of Perplexity: A Deep Dive into Likelihood Scores [Электронный ресурс]. URL: https://canvas4everyone.com/blogs/news/unraveling-the-mystery-of-perplexity-a-deep-dive-into-likelihood-scores (дата обращения: 27.03.2025).
Chang Y. et al. A survey on evaluation of large language models //ACM transactions on intelligent systems and technology. – 2024. – Т. 15. – №. 3. – С. 1-45.
UpTrain Blog. Decoding Perplexity and Its Significance in LLMs [Электронный ресурс]. URL: https://blog.uptrain.ai/decoding-perplexity-and-its-significance-in-llms/ (дата обращения: 27.03.2025).
Madala, Sudheer. Introduction to Probability Theory in NLP [Электронный ресурс] // Scaler Topics. URL: https://www.scaler.com/topics/nlp/probability-theory-nlp/ (дата обращения: 27.03.2025).
Gu J. et al. Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation //arXiv preprint arXiv:2404.09043. – 2024.
Ali S, Cibas E. The Bethesda System for Reporting Thyroid Cytopathology. (Ali SZ, Cibas ES, eds.). Cham: Springer International Publishing; 2018. doi: https://doi.org/10.1007/978-3-319-60570-8
Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda System for Reporting Thyroid Cytopathology. Thyroid®. July 2023. doi: https://doi.org/10.1089/thy.2023.0141
Papineni K. et al. Bleu: a method for automatic evaluation of machine translation //Proceedings of the 40th annual meeting of the Association for Computational Linguistics. – 2002. – С. 311-318.
Lin C. Y. Rouge: A package for automatic evaluation of summaries //Text summarization branches out. – 2004. – С. 74-81.
Shumailov I. et al. AI models collapse when trained on recursively generated data //Nature. – 2024. – Т. 631. – №. 8022. – С. 755-759.
Allen-Zhu Z., Li Y. Physics of language models: Part 3.3, knowledge capacity scaling laws //arXiv preprint arXiv:2404.05405. – 2024.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162