A Neural Network Approach for the Analysis of Computed Tomography Images in Adrenal Gland Diseases
Abstract
Full Text:
PDF (Russian)References
Tobias Carling «How is adrenal cancer diagnosed?» [Electronic resource]. Available: https://www.adrenal.com/blog/how-is-adrenal-cancer-diagnosed.
Andreeva A.V. Podhod vracha obshhej praktiki k vedeniju pacientov s incidentalomami nadpochechnikov. Terapevt, 2019, # 12 s. 70-78.
Adrenal incidentalomas: imaging challenges—role of MDCT scan versus MRI in evaluating adrenal incidentalomas. [Electronic resource]. Available: https://ejrnm.springeropen.com/articles/10.1186/s43055-021-00437-w.
U-Net: Convolutional Networks for Biomedical Image Segmentation. [Electronic resource]. Available: https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28.
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images [Electronic resource]. Available: https://link.springer.com/chapter/10.1007/978-3-030-00934-2_99.
Hybrid Deep Learning Framework for Classification of Kidney CT. [Electronic resource]. Available: arXiv:2502.04367v1.
Accurate classification of lung nodules on CT images using the TransUnet. [Electronic resource]. Available: https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2022.1060798/full.
Using CT radiomic features based on machine learning models to subtype adrenal adenoma. [Electronic resource]. Available: https://link.springer.com/article/10.1186/s12885-023-10562-6.
Computed Tomography-Based Machine Learning Differentiates Adrenal Pheochromocytoma From Lipid-Poor Adenoma. [Electronic resource]. Available: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.833413/full?utm_source=chatgpt.com.
Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. [Electronic resource]. Available: https://link.springer.com/article/10.1007/s00330-017-5118-z?fromPaywallRec=true.
Machine learning-based texture analysis for differentiation of radiologically indeterminate small adrenal tumors on adrenal protocol CT scans. [Electronic resource]. Available: https://link.springer.com/article/10.1007/s00261-021-03136-2.
GitHub - rafiibnsultan/3D-CT-Image-Segmentation-Using-MONAI. [Electronic resource]. Available: https://github.com/rafiibnsultan/3D-CT-Image-Segmentation-Using-MONAI.
Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT. [В Интернете]. Available: https://pubs.rsna.org/doi/full/10.1148/radiol.220101.
Diagnostic Accuracy of CT Texture Analysis in Adrenal Masses: A Systematic Review. [Electronic resource]. Available: https://www.mdpi.com/1422-0067/23/2/637.
Video Pretraining Advances 3D Deep Learning on Chest CT Tasks. [Electronic resource]. Available: https://ar5iv.labs.arxiv.org/html/2304.00546.
EfficientNet family U-Net models for deep learning semantic segmentation of kidney tumors on CT images. [Electronic resource]. Available: https://www.frontiersin.org/articles/10.3389/fcomp.2023.1235622/full.
Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor Segmentation. [Electronic resource]. Available: https://arxiv.org/abs/2004.08108.
FPN-SE-ResNet Model for Accurate Diagnosis of Kidney Tumors Using CT Images. [Electronic resource]. Available: https://www.mdpi.com/2076-3417/13/17/9802.
Liver Tumor Localization Based on YOLOv3 and 3D-Semantic Segmentation Using Deep Neural Networks. [Electronic resource]. Available: https://pubmed.ncbi.nlm.nih.gov/35453870/.
An attempt at beating the 3D U-Ne. [Electronic resource]. Available: https://arxiv.org/abs/1908.02182.
UniverSeg: Universal Medical Image Segmentation. [Electronic resource]. Available: https://vitalab.github.io/article/2024/05/24/universeg.html.
Automated Adrenal Gland Disease Classes Using Patch-Based Center Symmetric Local Binary Pattern Technique with CT Images. [Electronic resource]. Available: https://link.springer.com/article/10.1007/s10278-022-00759-9?fromPaywallRec=true.
CT-based deep learning model for the prediction of DNA mismatch repair deficient colorectal cancer: a diagnostic study. [Electronic resource]. Available: https://pubmed.ncbi.nlm.nih.gov/36949511/.
A transfer learning based deep learning model to diagnose covid-19 CT scan images. [Electronic resource]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC9177227/?utm_source=chatgpt.com.
Detecting adrenal lesions on 3D CT scans using a 2.5D deep learning model. [Electronic resource]. Available: https://www.medrxiv.org/content/10.1101/2023.02.22.23286184v1.
3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. [Electronic resource]. Available: https://aacrjournals.org/cancerres/article/78/24/6881/633067/3D-Deep-Learning-from-CT-Scans-Predicts-Tumor.
Boosting Learning by Representing 3D Medical Imaging to 2D Features for Small Data. [Electronic resource]. Available: https://arxiv.org/html/2002.04251v3?.
3D Deep Learning on Medical Images: A Review. [Electronic resource]. Available: https://arxiv.org/abs/2004.00218.
Ultralytics YOLO11,» [Electronic resource]. Available: https://docs.ultralytics.com/models/yolo11/.
3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. [Electronic resource]. Available: https://iopscience.iop.org/article/10.1088/1361-6560/ab039b/meta.
ViPTT-Net: Video pretraining of spatio-temporal model for tuberculosis type classification from chest CT scans. [Electronic resource]. Available: https://arxiv.org/abs/2105.12810.
Vision Transformers: State of the Art and Research Challenges. [Electronic resource]. Available: https://arxiv.org/abs/2207.03041.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162