Multidimensional Matrix Network Diagrams

Evgeniy Goncharov, Tatyana Samoilova

Abstract


Visualization is an important type of information representation used to simplify the perception of information. In 1971, Roger Penrose in his article “Applications of negative dimensional tensors” introduced rules for constructing graphical models of convolution tensor operations, thus visualizing them. Convolutions of multidimensional data arrays are widely used in database development tasks, olap-cube construction, CNN, graph-based tasks, image processing tasks and many others. According to the works of Victor Munerman, the multidimensional matrix algebra is preferred to tensor algebra as an algebra for working with multidimensional objects in the framework of the above problems. In this article, the authors analyze Roger's graphical representation rules for their applicability to convolution operations of multidimensional matrix algebra. The analysis reveals that the available rules are not convenient to use for large numbers of convolution indices and that they are not applicable to (λ, μ)-convolution product of multidimensional matrices. The authors give definitions of convolution operations of the algebra of multidimensional matrices, show their specificity, and construct their diagrams. As an example of using these diagrams, the authors give a solution to the problem of constructing all possible routes in an oriented acyclic graph by means of (1, 0)-convolution product. The authors give an example of using the multidimensional matrix network diagram to solve the encryption problem. The obtained results can be used both for teaching students the algebra of multidimensional matrices and for building a graphical interface for interaction with a hardware-software complex realizing the algebra of multidimensional matrices.

Full Text:

PDF (Russian)

References


Nikolajchik M. I., Semerikov K. V. Issledovanie tipov vosprijatija informacii u studentov. – 2019.

Selina M. A. Tipy vosprijatija informacii obuchajushhimisja i ih rol' v izuchenii inostrannogo jazyka //Vserossijskij filologicheskij forum. – 2022. – S. 32-36.

Dolzhenkova V. I. Teoreticheskie osnovy vizual'nogo obuchenija //Problemy pedagogiki. – 2015. – №. 4 (5). – S. 17-23.

Dmitrieva E. A., Shagova O. A. Ispol'zovanie komponentov UMK linii «Sfery» po biologii na osnove ucheta vedushhego tipa vosprijatija informacii shkol'nikami //Jaroslavskij pedagogicheskij vestnik. – 2015. – №. 4. – S. 27-32.

Jakovleva E. V. Obuchenie matematike inostrannyh studentov v universitete na osnove kognitivno-vizual'nogo podhoda //Vestnik Vjatskogo gosudarstvennogo universiteta. – 2020. – №. 1. – S. 84-93.

Birjukova N. Ju. Rol' vizualizacii v obuchenii inostrannomu jazyku: mnemonicheskij metod ispol'zovanija fljesh-kart //Obrazovanie. Kar'era. Obshhestvo. – 2012. – №. 2 (34). – S. 65-68.

Marshalko D.A., Kubanskih O.V. Arhitektura svjortochnyh nejronnyh setej // Uchenye zapiski Brjanskogo gosudarstvennogo universiteta. 2019. №4 (16). URL: https://cyberleninka.ru/article/n/arhitektura-svyortochnyh-neyronnyh-setey (data obrashhenija: 14.08.2024).

Kas'janov V. N., Kas'janova E. V. Vizualizacija grafov i grafovyh modelej. – Zakrytoe akcionernoe obshhestvo" Sibirskoe nauchnoe izdatel'stvo", 2010.

Korshunova I. S. i dr. Razrabotka ER-diagrammy dlja SUBD PostgreSQL psiholingvisticheskoj bazy dannyh RuWordPerception. – 2021.

Emel'chenkov E. P., Goncharov E. I. Ternarnye algebry Holla. II //Sistemy komp'juternoj matematiki i ih prilozhenija. – 2019. – №. 20-2. – S. 59-64.

Mastickij S., Shitikov V. Statisticheskij analiz i vizualizacija dannyh s pomoshh'ju R. – Litres, 2022.

Kolomeec M. V., Chechulin A. A., Kotenko I. V. Obzor metodologicheskih primitivov dlja pojetapnogo postroenija modeli vizualizacii dannyh //Informatika i avtomatizacija. – 2015. – T. 5. – №. 42. – S. 232-257.

Ganzhara O. A. Problemy vizualizacii dannyh v prezentacii social'no-znachimogo materiala //Statisticheskij analiz social'no-jekonomicheskogo razvitija federal'nyh okrugov Rossijskoj Federacii: opyt, realii, perspektivy. – 2020. – S. 149-150.

Mushko V. V. Infografika i prezentacija dannyh.№ UD-5637/uch. – 2018.

Olenev A. A., Kirichek K. A., Potehina E. V. Programma dlja vizualizacii osnovnyh logicheskih operacij. – 2021.

Vohmin A. A., Evdokimova O. A., Maljavko A. A. Vizual'no-graficheskaja sistema programmirovanija na osnove razrabotki blok-shem algoritmov. Konvertirovanie tekstov programm na razlichnyh jazykah programmirovanija v blok-shemy i obratno //Juzhno-Sibirskij nauchnyj vestnik. – 2021. – №. 3. – S. 49-57.

Penrose R. et al. Applications of negative dimensional tensors //Combinatorial mathematics and its applications. – 1971. – Т. 1. – С. 221-244.

Matrices as Tensor Network Diagrams // URL: https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams (дата обращения: 14.08.2024).

Bridgeman J. C., Chubb C. T. Hand-waving and interpretive dance: an introductory course on tensor networks //Journal of physics A: Mathematical and theoretical. – 2017. – Т. 50. – №. 22. – С. 223001.

Sokolov N.P. Vvedenie v teoriju mnogomernyh matric. – Kiev: Naukova dumka, 1972 g. – 176 s.

E. I. Goncharov. K voprosu o mnogomernyh bazah dannyh. Sistemy komp'juternoj matematiki i ih prilozhenija: materialy XXV Mezhdunarodnoj nauchnoj konferencii, – Smolensk: Izd-vo SmolGU, 2024, Vyp. 25. – s. 116-124.

E. I. Goncharov, V. I. Munerman, T.A. Samojlova. Vybor parametrov mnogomernyh matric dlja obobshhennogo algoritma shifrovanija Hilla. Sistemy komp'juternoj matematiki i ih prilozhenija: materialy XX Mezhdunarodnoj nauchnoj konferencii, – Smolensk: Izd-vo SmolGU, 2019, Vyp. 20. – s. 111-116.

Munerman V. I., Samojlova T. A. Algebraicheskij podhod k

algoritmizacii zadach marshrutizacii //Sistemy vysokoj dostupnosti. T. 14, № 5., g. 2018, str. 50-56, DOI: 10.18127/j20729472-201805-08

Goncharov E.I. Multi-Dimensional Definition of Convolution // Modern Information Technologies and IT-Education. 2021. Vol. 7, No. 3. P. 541-549. DOI: https://doi.org/10.25559/SITITO.17.202103.541-549

Goncharov E.I., Munerman V.I., Sinitsyn I.N. Modern technological tools for creating multidimensional matrix database machines // Highly Available Systems. 2024. V. 20, No. 1. P. 5−15. DOI: https://doi.org/ 10.18127/j20729472-202401-01

Goncharov E., Munerman V., Yakovlev G. Software and Hardware Complex for Calculating Convolutions by Methods Multidimensional Matrix Algebra //2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). – IEEE, 2021. – С. 2176-2180.

Rokis K., Kirikova M. Challenges of low-code/no-code software development: A literature review //International Conference on Business Informatics Research. – Cham : Springer International Publishing, 2022. – С. 3-17.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность ИБП для ЦОД СНЭ

ISSN: 2307-8162