On geometric parametrization of the p-adic solenoid and applications to quantum cryptography

Tatiana Troianok

Abstract


This article describes the application of geometric parametrization of the p-adic solenoid in quantum cryptography. A geometric mapping of solenoid elements onto the unit square is presented, enabling the parameterization of qubit quantum states on the Bloch sphere. Based on this mapping, the following algorithms are proposed: a solenoid secret key generation algorithm, a Sierpinski public key generation algorithm, a quantum-state generation algorithm from a Sierpinski public key, a solenoid steganography algorithm, a solenoid digital signature scheme, and a solenoid challenge-response authentication protocol, all utilizing the transformation of keys into quantum parameters (ϕ, θ). The possibility of integrating the representation of solenoid elements into quantum key distribution protocols (e.g., BB-84) for state encoding is demonstrated. The key advantage of these approaches is the use of the p-adic metric and the topological properties of the solenoid to  enhance cryptographic strength

Full Text:

PDF (Russian)

References


A. M. Robert, A Course in p-adic Analysis, angl., 3-e izd. New York: Springer, 2000.

R. N. Gumerov, Gruppovye struktury i ih prilozhenie v analize i topologicheskoj gruppe. Kazan': Izd-vo KFU, 2022.

S. Semmes, Some Remarks About Solenoids, angl. 2012. doi: 10.48550/arXiv.1210.4788.

A. Haynes, H. Koivusalo i J. Furno, «Bounded Remainder Sets for Rotations on p-adic Solenoids,» angl., Proceedings of the American Mathematical Society, t. 147, # 12, s. 5105—5115, 2019.

Y. I. Manin, «Reflections on Arithmetical Physics,» angl., Conformal Invariance and String Theory, s. 293—303, 1989.

I. V. Volovich, V. S. Vladimirov i Ju. I. Zelenov, p-adicheskij analiz i matematicheskaja fizika. Moskva: Nauka, 1995.

A. S. Andrushhenko i dr., Prikladnye kvantovye tehnologii dlja zashhity informacii. Media Gruppa ”Avangard”, 2023. [8] K. H. Hofmann i S. A. Morris, The Structure of Compact Groups, angl. 2020, t. 25.

V. S. Anashin, «Free Choice in Quantum Theory: A p-adic View,» angl., Entropy, t. 25, # 2, 2023.

A. Jadczyk, «On Quantum Iterated Function Systems,» angl., Central European Journal of Physics, t. 2, # 3, s. 492—503, 2004.

K. V. Antipin. «Vvedenie v kvantovuju teoriju informacii.» (2022), url: https://teach-in.ru/course/introduction-to-quantum-information-theory-antipun/lecture.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность ИБП для ЦОД СНЭ

ISSN: 2307-8162