Improving the Resilience of Machine Learning Models to Adversarial Attacks for Cross-Site Scripting Detection
Abstract
Full Text:
PDF (Russian)References
The Open Web Application Security Project (OWASP) Top 10, https://owasp.org/www-project-top-ten/, 2021.
Cross Site Scripting (XSS). OWASP, https://owasp.org/www-community/attacks/xss/.
Weamie, S. Cross-Site Scripting Attacks and Defensive Techniques: A Comprehensive Survey* // International Journal of Communications, Network and System Sciences, 15, 126-148, 2022
Mereani F. A., Howe J. M. Detecting Cross-Site Scripting Attacks Using Machine Learning // The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). — Cham, 2018. — S. 200—210.
Fawaz Mahiuob Mohammed Mokbal D. W., Wang X. Detect Cross-Site Scripting Attacks Using Average Word Embedding and Support Vector Machine // International Journal of Network Security. — 2022.
F. M. M. Mokbal [i dr.] XGBXSS: An Extreme Gradient Boosting Detection Framework for Cross-Site Scripting Attacks Based on Hybrid Feature Selection Approach and Parameters Optimization // Journal of Information Security and Applications. — 2021. — T. 58. — S. 102813.
Abaimov S., Bianchi G. CODDLE: Code-Injection Detection With Deep Learning // IEEE Access. — 2019. — T. 7. — S. 128617—128627.
Y. Fang [i dr.] DeepXSS: Cross Site Scripting Detection Based on Deep Learning // Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. — Chengdu, China : Association for Computing Machinery, 2018. — S. 47—51. — (ICCAI ’18).
L. Lei [i dr.] XSS Detection Technology Based on LSTM-Attention // 2020 5th International Conference on Control, Robotics and Cybernetics (CRC). — 2020. — S. 175—180.
T. Hu [i dr.] Cross-site scripting detection with two-channel feature fusion embedded in self-attention mechanism // Computers Security. — 2023. — T. 124. — S. 102990.
Z. Liu [i dr.] GraphXSS: An efficient XSS payload detection approach based on graph convolutional network // Computers Security. — 2022. —T. 114. — S. 102597.
Namiot D. E., Il'jushin E. A., Chizhov I. V. ATAKI NA SISTEMY MAShINNOGO OBUChENIJa-OBShhIE PROBLEMY I METODY // International Journal of Open Information Technologies. – 2022. – T. 10. – #. 3. – S. 17-22.
Apostol Vassilev, Alina Oprea, Alie Fordyce, and Hyrum Anderson. Adversarial machine learning: A taxonomy and terminology of attacks and mitigations. Technical Report. // National Institute of Standards and Technology. 2024
Q. Wang [i dr.] Black-box adversarial attacks on XSS attack detection model // Computers Security. — 2022. — T. 113. — S. 102554.
L. Chen [i dr.] XSS adversarial example attacks based on deep reinforcement learning // Computers Security. — 2022. — T. 120. — S. 102831.
Foley M., Maffeis S. Haxss: Hierarchical Reinforcement Learning for XSS Payload Generation // 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). — 2022. — S. 147—158.
Y. Fang [i dr.] RLXSS: Optimizing XSS Detection Model to Defend Against Adversarial Attacks Based on Reinforcement Learning // Future Internet. — 2019. — T. 11, # 8.
X. Zhang [i dr.] Adversarial Examples Detection for XSS Attacks Based on Generative Adversarial Networks // IEEE Access. — 2020. — T. 8. — S. 10989—10996.
OWASP. Cross Site Scripting Prevention Cheat Sheet. —https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html.
PortSwigger. Cross-site scripting (XSS) cheat sheet. https://portswigger.net/web-security/crosssite-scripting/cheat-sheet.
J. Schulman [i dr.] Proximal Policy Optimization Algorithms // arXiv preprint arXiv:1707.06347v2 — 2017.
Cross site scripting XSS dataset for Deep learning. https://www.kaggle.com/datasets/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-deep-learning.
XSS dataset. https://github.com/fawaz2015/XSS-dataset.
XSSDataSets, https://github.com/fmereani/Cross-Site-Scripting-XSS/tree/master/XSSDataSets.
Suhomlin, Vladimir Aleksandrovich, et al. "Model' cifrovyh navykov kiberbezopasnosti 2020." Sovremennye informacionnye tehnologii i IT-obrazovanie 16.3 (2020): 695-710.
Yudova, E. A., and Olga R. Laponina. "Analysis of the possibilities of using machine learning technologies to detect attacks on web applications." International Journal of Open Information Technologies 10.1 (2021): 61-68.
Merkulov, Artem S., and Olga R. Laponina. "Testing Cross-Site Scripting (XSS) Vulnerabilities in an Online Payment Web Application." International Journal of Open Information Technologies 7.10 (2019): 59-70.
Umnaja infrastruktura, fizicheskie i informacionnye aktivy, Smart Cities, BIM, GIS i IoT / V. P. Kuprijanovskij, V. V. Alen'kov, I. A. Sokolov [i dr.] // International Journal of Open Information Technologies. – 2017. – T. 5, # 10. – S. 55-86. – EDN ZISODV.
Razvitie transportno-logisticheskih otraslej Evropejskogo Sojuza: otkrytyj BIM, Internet Veshhej i kiber-fizicheskie sistemy / V. P. Kuprijanovskij, V. V. Alen'kov, A. V. Stepanenko [i dr.] // International Journal of Open Information Technologies. – 2018. – T. 6, # 2. – S. 54-100. – EDN YNIRFG.ferences
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162