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Abstract—This article presents a numerical solution to the 

problem of optimal control of objects in an environment with 
phase constraints. The proposed approach of synthesized 
optimal control consists of two steps. First, the problem of 
synthesizing the stabilization system of an object relative to 
some point in the state space is solved. The resulting feedback 
control system is added to the mathematical model of the 
control object and then the problem of the optimal location of 
stabilization points, which are essentially attractors, is solved. 
To solve the synthesis problem, methods of symbolic regression 
are used, which are completely machine treated, universal and 
independent of the type of control object. An example of solving 
the optimal control problem for a group of quadrocopters 
moving a cargo on flexible rods in a space with constraints is 
given. 
 

Keywords—Optimal control, symbolic regression, network 
operator, phase constraints, control synthesis. 
 

I. INTRODUCTION 
The problem of optimal control has a rather long history 

and today a large pool of both engineering and analytical 
methods for its solution has been created. But there is a gap 
between these approaches.  

Analytical methods, well formalized and very beloved by 
fundamentalist mathematicians, are practically not used by 
practical engineers, since in real problems with nonlinear 
objects and functionals, with phase constraints, the use of 
analytical methods is not always a solvable problem. For 
example, there is a fact that the Pontryagin maximum 
principle [1, 2], being the main analytical result on optimal 
control, is practically not used in complex engineering 
problems. And the reasons for this are different. Firstly, in 
view of computational complexity, and secondly, this 
approach does not say anything about the stability of the 
movement of the object relative to the resulting optimal 
trajectory. And the solution of the additional problem of 
stabilization of motion near the optimal trajectory casts 
doubt on the optimality of the initially obtained optimal 
trajectory [3]. Existing numerical methods [4, 5] also do not 
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guarantee stable motion with respect to the optimal 
trajectory and require additional refinement. 

Unlike mathematicians, engineers first make the object 
stable, and only then calculate the optimal trajectory. The 
introduction of additional regulators in the feedback changes 
the model of the control object. And this is an essential fact 
that mathematicians do not take into account when 
calculating optimal controls.  

However, the calculation of optimal regulators by existing 
methods both analytical [6, 7] or technical [8, 9] is highly 
dependent on a specific object and is not a universal 
approach. 

In this paper, it is proposed to use a new two-stage 
computational method of synthesized optimal control. 
According to this method, optimal control is calculated for a 
stabilized object, which meets the requirements of engineers. 
Moreover, the calculation of the stabilization system and 
further calculation of the optimal trajectory is carried out by 
numerical methods that are not dependent on the specific 
model of the object. This approach is universal and allows 
you to automate the process of calculating control systems 
and thereby speed up their development. 

The article presents a mathematical model of the control 
object, which is a group of quadrocopters that together on 
flexible rods carry the load to a given terminal position in an 
environment with obstacles. The paper provides a 
mathematical description of the proposed two-stage 
approach, data for a computational experiment and the 
results obtained.  

II. SYNTHESIZED OPTIMAL CONTROL 
Consider the classical problem of optimal control 

),( uxfx = ,                                       (1) 
where ∈x ℝn, ⊆∈ Uu ℝm , U  is a compact set. 

∈= 0)0( xx ℝn.                                      (2) 

∈= f
ft xx )( ℝn.                                    (3) 

where +≤ tt f , +t  is a positive value, it is given limited 

time of control process. 
It is necessary to find the control U∈u  to minimize the 

functionality 
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To solve the optimal control problem (1) - (4) by the 
synthesized optimal control, initially the synthesis problem 
is solved. 
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The equations (5) – (10) show, that after solution of the 
synthesis problem the differential equation system  

))(,( * xxhxfx −= ,                               (11) 
is stable according to Lyapunov's stability theorem by the 
first approximation. For these system (11) there is a stable 
point )(~ *xx , that has an attractor property and is a trivial 
solution of the system (11). 

In the second stage the optimal control problem is solved 
with the model (11) of control object, the initial conditions 
(2), the terminal conditions (3), and the initial functional (4), 
but only it is necessary to find a vector function )(* tx  that 
is used instead of a control vector 

∫
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Note, the control vector )(* tx  in the new optimal control 
problem (2), (3), (11), (12) has the same dimension as a state 
space vector )(tx  and doesn’t have restriction.  

The absence of restrictions on control allows us to 
consider this problem (2), (3), (11), (12) as Lagrange's task 
in the classical variational calculus. If the equation (11) is 
resolved with respect to *x  

),(* xxgx = ,                               (13) 
and insert this equation in the functionality (12), then the 
classical functionality of variational calculus is received 
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For this functionality (14) Euler function can be apply 
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As a result n  differential of second orders are obtained. 
Solution of these equation for initial conditions (2) and 
terminal conditions (3) allow to receive optimal trajectories 
in the state space. 

In practice resolving nonlinear (11) respect )(* tx  is a 
very difficult problem. More real the optimal control 

problem (2), (3), (11), (12) to solve by a numerical method. 
Here Pontriagin's maximum principle can be used.  

Hamiltonian for the problem (2), (3), (11), (12) is 
+−−= ))(,(),,( *

0
* xxhxψxx fH  
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where T
n ][ 1 ψψ= ψ  is a co-state variable vector 

i
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Since *x  has no restrictions, the conditions of the 
maximum principle for the Hamiltonian can be obtained 
analytically from equation 
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The synthesizing function )( * xxh −  can very complex 
and therefore Hamiltonian (16) can have some maximums.   

For this optimal control problem (2), (3), (11), (12) better 
to use direct approach and numerical methods of nonlinear 
programming.  

Our experience shows that the best of all to look for the 
solution of this optimal control problem (2), (3), (11), (12) 
in the form piecewise constant functions. As a result 
coordinates of some points  

K*,1*, ,, xx  ,                               (20) 
are found. These points are switched on a given time interval 

1*,* )( += jt xx , if tjttj ∆+<≤∆ )1( , 1,,0 −= Kj  , (21)  
where 
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where t∆  is a given time interval. 

III. THE SYNTHESIS PROBLEM AND ITS SOLUTIONS 
In the proposed approach the synthesis problem is a most 

difficult part. An essential feature of this problem is that its 
solution is a multidimensional function of a vector argument.  

:)( * xxhu −= ℝn→ℝm.                          (23) 
Now, there are known many approaches to the solution of 

the synthesis problem. All these methods can be divided into 
three classes. 

A) Analytical methods. These are various methods for 
solving the Bellman equation. In this case the 
problem of stability providing (6) – (10) is needed to 
formulate as an optimal problem. The backstepping 
integrator [10] and analytical construction of 
aggregated controllers [11] also belong to analytical 
methods. These can be other special methods for 
determined mathematical model of control object, 
for example, analytical construction of optimal 
controllers [8] for linear systems with quadratic 
quality criterion. 
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B) Technical methods. These methods for synthesis 
problem solution consider an approach, when the 
control function (5) is given with accuracy to values 
of parameters. These methods also include methods 
for creating control systems based on various 
controllers, including PI and PID controllers. Note, 
that using of PID or PI controller increases the 
dimension of the control object mathematical model. 
This class of methods also include the neural 
networks. A neural network is a complex function 
with known structure but with big number of 
unknown parameters. Finding of these parameters' 
values is called learning of neural network. 

C) Numerical methods. These methods look for a 
structure and parameters values of control function 
(5). Today, all these numerical methods for control 
synthesis problem can be designed on a base of 
symbolic regression methods [14]. The founder of 
these methods is John Koza from Stanford 
University [15]. All methods of symbolic regression 
code the mathematical expression in the form of 
special code, and then they search for the optimal 
mathematical expression by some special 
evolutionary genetic algorithm. Application of the 
genetic algorithm for searching for mathematical 
expression requires development of special 
operations of crossover and mutation, therefore all 
methods use various genetic algorithms. 

In this work for the synthesis problem solution the 
network operator method is used. This symbolic regression 
method codes a mathematical expression in the form of 
directed graph of network operator. In computer memory the 
network operator graph is stored in the form of integer 
matrix.  

For search of solution the network operator method uses 
the variation genetic algorithm. This algorithm is built on the 
principle of small variations of basic solution. According to 
this principle one basic solution is coded. Then small 
variations of the code are determined. For an integer matrix, 
small variation is a change of one element. All small 
variations are codded too. So one possible solution is one set 
of small variation codes. Genetic algorithm operations are 
performed on the sets of small variations.  

Consider an example of network operator code. Let a 
mathematical expression be 

 )sin()exp( 122111 qxqxqxu +−+= ,                 (24) 
where 1x , 2x , 1q , 2q   are arguments of the mathematical 
expression.  

To code this mathematical expression, the following 
functions are enough:  

- functions with one arguments 
),sin()(,)(,)((F 321 zzfzzfzzf =−===  

))exp()(4 zzf = ,                           (25) 
- functions with two arguments 

)),(,),((F 21212212112 zzzzfzzzzf =+== .   (26) 
The graph of the network operator for mathematical 
expression (24) is presented in the fig. 1. In the graph, 
arguments of mathematical expression are located in sourece 

–nodes. The number of functions with one arguments are 
located near the arcs. The numbers of functions with two 
arguments are located in nodes. The numbers of nodes are 
located in upper parts of nodes.    

 
Fig. 1. Graph of the network operator for mathematical 

expression (24) 
The matrix of the network operator foe the represented 

graph in the fig.1 is 
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To search for a solution in the NOP method, a variational 
genetic algorithm is used. It applies a principle of small 
variation of the basic solution [16]. Define small variations 
of the network operator matrix. A small variation makes 
small changes in the network operator matrix and results in a 
new network operator. Define one basic solution in the form 
of a basic network operator matrix and search for the best 
solution on a set of small variations of the basic solution.  

Any variation can be described by an integer vector of 
four components  

1 2 3 4[ ]Tw w w w=w ,      (28) 
where 1w  is a number of the small variation, 1 {0,1,2,3}w ∈ , 

2w  is a row number of the NOP matrix, 3w  is a column 
number of the NOP matrix, 2 3, {1, , }w w L∈  , 4w  is a 
number of the function with one or two arguments, if 1 1w = , 
then 4 2{1, ,| F |}w ∈   else 4 1{1, ,| F |}w ∈  . 

Each new solution in the neighborhood of the basic 
solution is described by an ordered set of vectors of 
variations (28) 

1W ( , , )l= w w ,       (29) 
where l  is a size of the neighborhood of the basic solution. 

We obtain a new network operator matrix in the 
neighborhood of the basic solution after small variations of 
the basic matrix according to vectors from the set (29)  

0 1 0W l= =Ψ Ψ w w Ψ   ,    (30) 
where 0Ψ  is a basic network operator matrix. 

Each ordered set (29) of vectors of variations defines one 
of possible solutions in the neighborhood of the basic 
solution. The search area depends on the size l  of the 
neighborhood of the basic solution and the possibility to 
replace from time to time the basic solution on the best 
solution found by the time.  

To make crossover, select two possible solutions 
,1 ,W ( , , )i i i l= w w , ,1 ,W ( , , )j j j l= w w ,    (31) 

Randomly choose a crossover point {1, , }r l∈   and 
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exchange the subsets of the vectors of variations from the 
crossover point till the end. We obtain two new possible 
solutions 

,1 , 1 , ,

,1 , 1 , ,

W ( , , , , , ),
W ( , , , , , ).

i i i r j r j l

j j j r i r i l

−

−

=

=

w w w w
w w w w

  

      (32) 

To make mutation, select in the possible solution 
1W ( , , )l= w w    a mutation point {1, , }l∈ µ  and produce 

a new vector of variations w µ  in the position µ . 

IV. COMPUTATIONAL EXAMPLE 
Consider the problem of optimal control for a group of 

three quadcopters performing the joint task of transporting 
some load on flexible rods from a certain initial position to a 
given terminal one in space with phase constraints. The 
control object is described by a system of nonlinear 
differential equations.  

( )1 4 5 1 6 1 2 2sin cos sin / cos ,j j j j j j j jx x x x x x x x= + +  

( )52 1 6 1 2sin cos / cos ,j j j j j jx x x x x x= +  

( )53 1 6 1sin cos ,j j j j jx x x x x= +  

( )2 3 1 154 6 1/ / ,j j j jx x x I I I M I= − +  

( )5 4 6 3 1 2 2 2/ / ,j j j jx x x I I I M I= − +  

( )6 4 5 1 2 3 3 3/ / ,j j j jx x x I I I M I= − +  (33) 

7 10 ,j jx x=  

8 11,j jx x=  

9 12 ,j jx x=  

10 3 2 1 1 2 1sin cos cos sin sin ,j j j j j j j jx F x x x x x w= + −  

11 3 2 1 2cos cos cos ,j j j j j jx F x x x g w= − −  

12 1 2 1 2 3 3sin cos cos sin sin ,j j j j j j j jx F x x x x x w= − −  

where j  - is the quadrocopter number; j
kw are components 

of the weight load of the quadrocopter j  from the weight of 

the carried load, 1, 2,3k = ; 1
jw , 2

jw , 3
jw  are projections of 

the load on the axis 7x , 8x , 9x  respectively; 1
jx , 3

jx  are 
angles of rotation of the quadrocopter j  around horizontal 

axes; 2
jx  is an angle of rotation of the quadrocopter j  

around a vertical axis; 4
jx  and 6

jx  are angular velocities of 
rotation of the quadrocopter j  around the horizontal axes; 

5
jx  is an angular velocity of rotation of the quadrocopter j  

around a vertical axis; 7
jx , 9

jx  are coordinates of the center 

of mass of the quadrocopter j  on the horizontal plane; 8
jx  

is the height of the quadcopter j ; 10
jx , 11

jx , 12
jx  are 

projections of the linear speed of the quadcopter j  on the 

corresponding axis; j
iM  are control moments created by 

propellers of the quadcopter j  around the axes ix , 
1, 2,3i = ; jF  is the total thrust of all four quadcopter 

propellers , taking into account the mass correction m ; g  is 
a constant value of the acceleration of gravity; iI  are 

moments of inertia of the quadcopter around the axes ix , 
1, 2,3i = . 

The position of the load is determined by the state vector 
∈y ℝ 3  of the center of mass of the load in the subspace 

87 9, , }{x x x  
 1 2 3[ ]Ty y y=y , (34)  

where 1y , 2y , 3y  are the positions of the center of mass of 

the cargo along the axes 7x , 8x , 9x  respectively. 
Given the initial and final position of the load 

 0 0 0
1 2 3[ ]Ty y y=y , (35)  

 1 2 3[ ]f f f Ty y y=y . (36)  
We suppose that all three quadrocopters are similar, and 

the rods by which they move the load have the same length: 

1 2 3d d d d= = = .  
For equal load distribution on quadrocopters, all three 

quadrocopters should always be at the same height and be 
located at the vertices of an equilateral triangle. The size of 
this triangle determines the height of the load. Let the size of 
the triangle be determined by the radius of the circumscribed 
circle 0R . Then the height difference between the 

quadrocopter 8
jx , 1, 2,3j =  and the load 2y  is defined as 

 2 2
8 2 0
j yx d R− = − , 1,2,3j = . (37)  

Projections of the reaction force of the load on each 
quadrocopter are determined from the equations: 

1 1
1 0 cos( ) / ,w R d= − w τ  

1 1 2 2
2 0 / ,w d R d= −w       (38) 

1 1
3 0 sin( ) / ,w R d= w τ  

2 2
1 0 (cos( ) 3 sin( )) / 2 ,w R d= +w τ τ  

2 2 2 2
2 0 / ,w d R d= −w       (39) 

2 2
3 0 (sin( ) 3 cos( )) / 2 ,w R d= −w τ τ  
3 3
1 0 (cos( ) 3 sin( )) / 2 ,w R d= −w τ τ  

3 3 2 2
2 0 / ,w d R d= −w       (40) 

3 3
3 0 (sin( ) 3 cos( )) / 2 ,w R d= +w τ τ  

where 
2 2 2

1 2 3( ) ( ) ( ) ,i i i iw w w= − +w  1, 2,3i = ,    (41) 

1 2 2 1 2 2
0 7 7 9 93(( ) ( ) ) / 3R x x x x= − + − ,     (42) 

1 1 2 3
9 9 9 9
1 1 2 3
7 7 7 7

( ) / 3
arctan .

( ) / 3
x x x x
x x x x

 − + +
=  

− + + 
τ      (43) 

The problem has three types of phase constraints. 
1) Limitations caused by interaction in the group: 

quadrocopters must be at the vertices of an equilateral 
triangle. 

1 2 2 1 2 2 1 3 2 1 3 2
1 7 7 9 9 7 7 9 9( ) ( ) ( ) ( ) 0,px x x x x x x x= − + − − − − − − ≤χ ε

1 2 2 1 2 2 2 3 2 2 3 2
2 7 7 9 9 7 7 9 9( ) ( ) ( ) ( ) 0,px x x x x x x x= − + − − − − − − ≤χ ε
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1 2 2 1 3 2
3 8 8 8 8( ) ( ) 0,px x x x= − − − − ≤χ ε        (44) 

1 2 2 2 3 2
4 8 8 8 8( ) ( ) 0,px x x x= − − − − ≤χ ε  

where pε  is a given small positive number. 
2) The distance between each quadcopter and the load 

cannot be greater and should not be significantly less 
than the length of the rods d . 

( ) - 0,i L diΦ = ≤x          (45) 

( ) 0,3 r
i d LiΦ = − − ε ≤+ x      (46) 

where 2 2 2
7 1 8 2 9 3( ) ( ) ( )i i iL x y x y x y= − + − + − , 1, 2,3i = , 

rε  is a given small positive number,  
1

1 7 1,2 / 3 cos( ),y x L= − Ω  

1 2
2 8 1,2 / 3,y x d L= − −  

1 1
3 9 7 1,2( / 3 sin( )),y x x L= − − Ω  

2 3 2 3
7 7 9 9arctan(| | / | |)x x x xΩ = − − , 

1 2 2 1 2 2
1,2 7 7 9 9( ) ( )L x x x x= − + − . 

3) There are obstacles in the area of moving of 
quadrocopters and load.  

2 2
7 1, 9 2,

( )6 ( 1)
( ) ( ) 0,i i

j j j

i
i s j

r x x x x

Φ =+ − +
= − − + − ≤

x     (47) 

 
The quality of control is determined by a nonlinear 

functional that includes speed components and penalties for 
violating phase constraints.  

3 4 4
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where iα  are weighting factors, 1, 2,3i = , 

1 2 3( ) [ ( ) ( ) ( ) ( )]j j j j j TM M M F⋅ = ⋅ ⋅ ⋅ ⋅u , 1, 2,3j = ; ( )Aϑ  is a 
Heaviside function 
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All quadcopters must be located at the same height in the 
corners of the equilateral triangle. The equilateral triangle 
can change its size and rotation angle relative to a fixed 
coordinate system Two parameters a circumradius 0R  and 
an angle of equilateral triangle turn τ  are a control for 
group of robots. 

For solution of the synthesis problem the network 
operator method [13] was used. As a result, it has got the 

following control function 
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On the second stage the vectors of parameters were found 
 },,{Q 1 Kqq = ,                     (51) 

where 
Tfff qqqqxxx ][ 7654987

1 =q ,              (52) 
fx7 , fx8 , fx9  determinate position of the first quadcopter in 

the geometric space, iq , 7,6,5,4=i , define location of the 
equilateral triangle or location of others quadcopters 
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Fig. 2 shows the result of simulation. In the fig. 2 black 
lines are moving trajectories of quadcopters, dot-lines are 
trajectory of the load, red circles are obstacles.  

V. CONCLUSION 
In the paper we described and demonstrated the application 
of the new two-step approach to the numerical solution of 
the optimal control problem with phase constraints based on 
symbolic regression. This approach has several advantages 
over analytical and technical methods. Firstly, it does not 
depend on the characteristics of the model; it requires only a 
mathematical description of the model. The obtained control 
does not need to be further developed, as the analytical 
approach requires the stabilization system to be built up. The 
resulting solution is machine-made and easily transferred to 

the on-board computer of a real object. Based on the 
foregoing, we think this approach is very promising.  

 
Fig. 2. Projections of movement trajectories of three 

quadcopters and a load on the horizontal plane 
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