International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

Introduction to signal processing: sampled
signals

E. Tikhonov and M. Sneps-Sneppe

Abstract — The article introduces the theoretical
foundations of the modern method of storing, transmitting and
processing signals: digital processing. It’s a way to use
relatively small number of values instead of continuous real
signal.

For example, when transmitting information in telephony,
speech is concentrated in the bandwidth up to 4 kHz. But we
need doubled frequency 8 kHz sampling in digital form. This is
a fundamental requirement.

The reason is that the sampled signal is not just a set of
quantities, but a set of short scaled pulses of large value.
Resulting spectrum has multiple copies of original one
infinitely duplicated on sampling frequency steps. If these
copies do not overlap significant (due to the limited original
useful spectrum) we could restore initial signal with filtering
just one of them. That’s why doubled sampling frequency is
needed.

If the number of samples used is finite (as in the real cases),
then we can use only an equal number of samples of the
spectrum (or even a half of them). It’s enough for restoring.

As in the rest parts of the series, all theoretical ideas are
illustrated by mathematical rationales and Matlab programs
that demonstrate the work “in life”.

Keywords — Data rate, Dirac comb, Discrete Fourier
Transform (DFT), discrete-time signal, Fast Fourier
Transform (FFT), low pass filter, MatLab, Nyquist-Shannon-
Kotelnikov theorem, RC-circuit, Sampling, sampling theorem,
sinc-filter, telephone communication.

I. INTRODUCTION

The article continues the introduction to a signal
processing tasks for radio astronomy measurements and
satellite data collection that could be used in the “Ventspils
International Radio Astronomy Center” of the Ventspils
University of Applied Sciences.

In previous papers complex signal representation [1] and
spectral analysis principles [2] were discussed. Current
article is dedicated to basics of discrete approximations of a
signal for digital processing.

The rest of the paper is the following. In Section 2
example of digital voice transmit is given (comparing with
analogous). Section 3 suggests mathematical description of
sampled signal and corresponding spectrum changes. In
Section 4 restoring original continuous signal from these
samples and in Section 5 restoring the samples from
spectrum samples are discussed.

All the Matlab codes (used as the examples and produced

Manuscript received May 31, 2019.

Eugene Tikhonov is with Ventspils University of Applied Sciences,
10la InZenieru Street, LV-3601, Ventspils, Latvia (e-mail:
abava@abava.net).

Manfred Sneps-Sneppe is with Ventspils University of Applied
Sciences, 10la InZenieru Street, LV-3601, Ventspils, Latvia (e-mail:
amanfredss@venta.lv).

illustration figures to all parts) are collected in the
Appendix.

Il. DIGITAL VOICE TRANSMISSION

The basic concept of telephone communication is the so-
called channel of tone frequency. Why? Formants of voice
that determining speech intelligibility are located mainly in
the frequency range from 300 to 3 400 Hz. So for the analog
voice telephony, the band frequency 4 kHz is usually
allocated for transmission of each channel [6].

Currently, signal processing is usually done digitally - on
digital computers (or specialized digital processors). They
do spectral analysis, filtering, storage and transmission in
digital form [3]. That means only a certain set of signal
values are selected from the real signal - samples.

If we use the digital transmission, then according to the
Kotelnikov theorem one should take the sampling rate of
8 000 counts per second (8 kHz) - twice as much. This is a
deep and direct consequence of the discrete nature of the
signal obtained from the continuous.

The theorem was proposed and proved by Vladimir
Kotelnikov in 1933 in his work “On the capacity of ether
and wire in telecommunications”, in which the theorem was
formulated as follows:

“Any function f(t) consisting of frequencies from 0 to f,
can be continuously transmitted with any accuracy using

numbers following each other in i [4].

The theorem was discovered by several authors
independently. It is thus also known by the names Nyquist—
Shannon—Kotelnikov, and cardinal theorem of interpolation,
also sampling theorem, and Whittaker-Shannon
interpolation formula [5].

Pulse-code modulation of a signal

15
14
13
12
11
10

Value s(t)

O P L B AT~ 00D

Time, t

Fig 1. Pulse-code modulation (PCM) is a method used to
digitally represent sampled analog signals. Sampling and
quantization of a signal (red) for 4-bit linear pulse-code
modulation (LPCM).

13

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

In previous articles of the series [1] and [2], we used
MatLab scripts that simulates continuous signals by a large
number of points. In fact, we intuitively believe that if we
take a lot of samples, we will get the same (or almost the
same) result as for a real continuous signal. Is this true, and
how many samples should we get?

I11. DISCRETE SIGNALS

In digital signal processing (for example for digital
computer processing with quantized time ticks) we have a
deal with not continuous in time analog signal s(t), but with
discrete signal (or discrete-time signal) — set or sequence of
signal value samples set in different times {s,}[6]. In most
useful cases each value set at equal time intervals T
(sampling time):

S, = s(T xn)

Also data values of such signal could be not continuous
but also discrete (they can only take on one of a finite
number of values) — this type of signal is called discrete-
value signal. Discrete-time discrete-value signal is called
digital signal, and it’s possible values called symbols.

For the important case, where signal has only 2 possible
values 0 (“false”) and 1 (“true”) it is called bitstream.
Transmitted number in this case represented as a sequence
of sequential bits x; = [0, 1]:

x=2xk><2k

k

If signal takes 2" possible values also say that it contains
N bits for each symbol (because each symbol could be
represented as N bits). Bitstream obviously is a sequence of
1-bit symbols “0” and “1”.

Further we will not pay special attention to the
quantification of values, only the discretization of the signal
in time.

Parameter of a discrete signal that shows how many
values in second contained in a digital signal called signal
data rate. Signal bitrate is a number of bits per second in
digital signal (for the case of bitstream is equals to data rate
obviously). For example, if {s,} has K symbols per second
and each symbol contain M bits, then: data rate is K, bitrate
iSK X M.

for the voice telephony example discussed earlier, the
numerical value of each sample is represented as a 7 or 8-bit
binary code (that means each sample value if from 0 to 127
or to 255). So in the world of telecommunications there are
two transmission systems - at a speed of 56 (8 kHz * 7 bits)
or 64 (8 kHz* 8 bits) kbit/s.

This is not about the amount of useful information
contained in the signal in general. An overview of the
various encoding and compression methods is not included
in this article devoted only to the transmission of the
physical values of a given signal.

A. What is a discrete signal

The discrete signal fundamentally differs from
continuous. It is shown in mathematics that rational numbers
(that is, those that can be numbered in principle, even if
there are an infinite number) are fundamentally smaller than
the real numbers (which belong to the values of continuous
signals) that form the "continuum™ (continuum) [7]. That is,

even the smallest continuous variable signal will be “more
powerful” than any number of fixed samples, no matter how
many there are.

Due to the fact that the samples are just a set of points (or
numbers), we cannot simply use them in the real world
instead of continuous signals because of their finite value
and zero duration.

Therefore, a discrete signal means a special function that
depends on these number samples, used as the height of the
corresponding delta functions, following each other after a
sampling time interval T:

[oe]

Ssampled(t) = Z s5p6(t —nT)

n=-—oo
a) Signal continuous s(t) b) Signal values s(nT)
5
1 11Kk KKK KKK
g o5 $ os *
< <
> >
0] 0 KKKk K
-0.5 -0.5

0 1 2 3 0 1 2 3

Time, t Time, t

d) Sampled signal s t)

sampled

c) Sampling comb d(t)
15 15

UHRHTERt S

-0.5 -0.5
0 1 2 3 0 1 2 3

-
-

Value
Value

o
o

Time, t Time, t

Fig. 2. Example of the sampled signal: the initial continuous
signal (a), sampled values of the continuous signal (b), Dirac comb
of delta functions - marked with vertical lines with a height equal
to the area (c), sampled signal that is Dirac comb scaled with the
samples (d). See Matlab code in Appendix B.

This is an idealized representation, because the delta
functions are mathematical abstraction.

Some approximations can also be sequences of pulses (for
example, short rectangular ones with a large voltage value),
and the shorter their duration, the less distortions due to their
shape will be introduced. This clearly illustrates the
definition of the delta function as the limit of suitable pulses,
which we used earlier [2].

Instead of infinite summation limits, finite ones can be
used (if the original signal is time limited), for example,
from 0 to N. In this case, the signal can be considered
original, defined at infinity, multiplied by a function that
takes values in the appropriate limits 1, and 0 is outside
these limits.

B. How the signal changes if only samples are used
from it

At first sight, we lose an infinite amount of information,
because there were continuous intervals with an uncountable
number of points, and only individual values remain.

However, under certain conditions, it is possible to restore
the original continuous signal absolutely precisely from this
limited number of points. In practice, even if these
conditions are not strictly fulfilled, a fairly close result can
be obtained.

14

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

To demonstrate that we could use spectral analysis using
Fourier Transform [2]. The spectrum is one-to-one identifies
the signal. So if the spectra of the two signals are the same,
then the signals are the same.

Therefore, we consider what happens to the signal
spectrum, if only samples have been selected from it.

We can write the function of a discrete signal as a product
of the original continuous signal by a special function:

Ssampled(t) = S(t) X Z 5(1’ —nT)
— a(t)
This d(t) function used for sampling is called the Dirac
comb:

() = Z 8(t—Txn),rez
n=-—co
The spectrum of the product of two signals (Fourier
transform) is the already known operation of convolution of
the original signals (with some scaling):

s =f®)g) © S(w) = s(t)e 7 dt

!

m_f F@Og(D)e I dr
[1

I I
@ [G(u)e+fufdu| e Jotdt

j

!

51l
3
%8

—00

IFT

o | e 1
I I
=% f G(u)l f f(t)e‘j(“’_”)tdt}du

FT

= f G@F (@ —wdu = = x (G * F)(®)

Therefore, if we select samples from the signal (using the
Dirac Comb), the total spectrum will be a convolution of the
original spectrum with the Comb spectrum.

What is the Dirac Comb spectrum;

D(w) _ L fd(t)e‘fwfdt
m_m

[oe]

Il
N|H
S
8~——3g
>
Yo
o~
|
Pﬂ
X
=)
N/
®
o
€
QU
o~

See Appendix A

V2m — T
= T (S((U - TTL)
n=-—oo
A detailed calculation of some steps (marked above in the
formula) is given in Appendix A.
So, the Dirac comb in time (with the time step T and the

scale 1) is a Dirac comb in frequencies space (with the

frequency step 2?” and the scale g).

a) Time sampling d(t)

1
1G
Z 05}
=
0
T
0.5 L L L L L L L L L \
-5 -4 -3 -2 -1 0 1 2 3 4 5
Time t, sec.
6 b) Frequency sampling D(w)
i i
4
g 2f
>
0
o
9 . . i T .)
30 20 10 0 10 20 30

Frequency w, rad/sec.

Fig. 3. Dirac comb in time space spemennom (a) and frequency
space (b). See Matlab code in Appendix C.

Filtering property of the delta function means that
convolution with it shifts the function to a given point.
Therefore, the spectrum of the sampled signal is original

continuous signal spectrum scaled by le_n and copied with a

step of 27" equals to the sampling frequency :

1
Ssampled (w) = E X (S * D) (w)

—_— 1 [
= f Sw)D(w —u)du

1
-))
><E fS(u) Z S(w—u
2 - T
—?n)du
) w
=W Z fS(u)S(w—u
2 e
—?n)du
1 21
=Tmnzm5<w—7n>du

15

Im S(w)

Re / Im

Anlge S(w)

'
ot

Abs S(w)
(=]

-0.

0.

5

5

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

a) Signal s(t) = rectangularPulse(0, 1, t), and sampling s,,

Signal s(t)

% Samples s,
——=Sampled Syumprea(t)
Restored s;esored(t)

Time, t (sec)

b) Spectrum of a signal S(w)=(cos(w)*1i + sin(w))/w - 1i/w

ot

40 0.5
Frequency w, rad/s

Re S(w)
Im S(w)

-40 -30 -20 -10 0 10 20 30 40
Frequency w, rad/s

. NN AN e

50

-40 -30 -20 -10 0 10 20 30 40
Frequency w, rad/s

ANANANANANAN
T NN

50

-50

-40 -30 -20 -10 0 10 20 30 40
Frequency w, rad/s

50

c) Spectrum Syqmpreqa(w) of sampled signal s,

Frequency w, rad/s

3
2
)
£
% 0
g
E
~
Q
o~

b L L A L L L L
-40 -30 -20 -10 0 10 20 30 40
Frequency, w (rad/s)

AN VNSV

o1 b L L f L L L L

Abs S(w)

-40 -30 -20 -10 0 10 20 30 40
Frequency w, rad/s
=77
: SN TN
of Jq\ AN
NN N NS
< 5L L L A L L L L
-40 30 -20 -10 0 10 20 30 40

Frequency w, rad/s

Fig. 4. Single rectangular pulse signal sampling:
continuous signal, samples and sampled signal (a), spectrum
of the original signal (b), spectrum of the sampled signal (c).
See Matlab code in Appendix D.

1V. KOTELNIKOV THEOREM: CONTINUOUS SIGNAL
RECOVERY FROM THE SAMPLES

As we see the spectrum of sampled (discretized) signal is
different from the original continuous.

In the general case, the copies of a spectrum are
superimposed on each other and distort so that it is
impossible to obtain the original back (to restore the
continuous signal).

However, for example, if the step between copies of the
spectra (equal to the sampling frequency) is large enough
compared to the width of the spectrum itself, they can be
divided (by filtering all but one copy). Since the copies are

located at a distance of the sampling frequency 2?" from each

other, the width of the spectrum of the continuous signal
should be 2 times smaller than this step so that they do not
overlap. This is the essence of Kotelnikov's theorem.

A. Restoring with the ideal low pass filter

To do this, we can apply an ideal low-pass filter (leaving
only frequencies from 0 to Q) or a band-pass filter
(extracting the shifted spectrum from other copies), for
example:

16

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

Srestored (w) = Ssampled (w) X Hlowpass (W) X TV2m
Where Hioypass i the transfer ratio (the value at the
output of the filter divided by the value at the input):

1, lw] < 02
Hlowpass(w) = {0 lw| = Q

Impulse response (inversed Fourier transform) for it:
Q

1 - 1 e/t —g—J
h(t) = — fe]“’ dw = -
© \/271_Q V2w Jt
_ 20 ><sith
V2 Qt

This filter is called “ideal low pass filter” or “sinc-filter”

because of sinc-function (sinc(x) = 22 —). Unfortunately, it

couldn’t be realized in practice — because it is infinite in
time (in the future and in the past).
Spectra multiplication is equivalent to signal convolution:

S(w) = F(w)G(w) © s(t) = \/L_n f S(w)el®tdw

1)
=E fF(w)G(w)e""tdw
. [.]
1 [1 I
ZE mF(w)|m J-g(r)e 1“”dr|e""tdw

FT

]

= J-g(r)| f F(w)e/®t- ’)dwid

1 1
- f JOf =Dt = (g = HI®)
Thus, the signal restored by this frequency filtration:

s(t) = TV2m x % f Ssampiea W R(t — T)dT

—00

\/_f Z SnB(T— nT)x\/—_

—oco N=—0

o sin Q(t — 1)
Q(t s —

Z S fa(r

nsm Q(t — ‘L')
- TLT) W dt
sm(ﬂ(t — nT))
- Y, o

In order to avoid the imposition of spectra TSE is

necessary. This is the mathematical formulation of the
Kotelnikov theorem.

a) Signal s(t) and restored s*(t)

—s(t)
L L sineto)
sinc(t-0.25)
sinc(t-0.5)
08 | ... sinc(t0.75)
sinc(t-1)
06 L sinc(t-1.25)
......... sinc(t-1.5)
sinc(t-1.75)
S o4 L
Ti sinc(t-2)
> sinc(t-2.25)
02 | sinc(t-2.5)
sinc(t-2.75)
sinc(t-3)
0 b restored O
¥ samples
0.2 1
-0.4 L L : ' ' ;
3 o 1 0 1 2 3

Time t, sec.

b) Spectrums

15 L

s
1L 75.1 e O
Sinc H(f)

05 L

lacal
MY

Spectrum value

-0.5 1 L L 1 1]
-6 -4 -2 0 2 4 6

Frequency F, Hz

Fig. 5. The original continuous rectangular single pulse
signal recovery from the samples: the original and
reconstructed signal (a), the spectra of the original signal,
the sampled signal and the filter (b). See Matlab code in
Appendix E.

B. Restoring with not ideal low pass filter

An ideal low-pass filter (sinc-filter) is not physically
realizable, since the sinc-function has non-zero values for all
time points up to infinity, and the impulse response of an
ideal filter is not zero for times less than zero. It can only be
used mathematically.

For example, consider the signal restoration using the
simplest low-pass filter - RC circuit from the article [1]

Fig. 6. RC circuit and its time and vector diagrams

17

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

The amplification spectrum (dependence of the output
voltage, that is, the capacitor on the input voltage for each
individual frequency of the input signal) depends on the
impedances:

1
H(w)=&= e jw'C = 1
Upn Zr+Z; R(A+jwRC) 1+ jwRC

Module (absolute value without phases) of this transfer

characteristic:

1
H(@)] ==
J1 + (wRC)
a) RC-response H(w)=U M
1
= os H(w) abs
£0 — "o
0 i I I I i
-40 -30 20 -10 0 10 20 30 40

Frequency w, rad/sec

o ﬁ?\ H(w) angle
e T

L)
-40 -30 -20 -10 0 10 20 30 40

angle, rad/sec

Frequency w, rad/sec

1~ H(w) real j\
H(w) imag |
E ol] w — —
s b
@ w
a] —® T L L L L
-40 30 20 -10 0 10 20 30 40
Frequency w, rad/sec
b) Spectrums
2
1
Q
b4
0
1 L L
-40 -30 -20 -10 0 10 20 30 40
Frequency w, rad/sec
2
1
o
b4
0
1 L L
-40 -30 -20 -10 0 10 20 30 40

Frequency w, rad/sec

c) Restored signal

s()
s
restored ©

Value

5 -4 3 2 -1 0 1 2 3 4 5
Time t, sec
Fig. 7. The RC circuit can be used as a simple low pass filter:
response spectrum (a) and a recovered sampled rectangular pulse

signal (b). See Matlab code in Appendix F.

It can be seen that although RC-circuit is not very good
low-pass filter. The level of power decreasing by a factor

of 2 (that is, the voltage amplitude 2 times lesser) is
achieved at a frequency Q = %, this can be considered as

a conditional filtering boundary.

For recovery, we can also directly simulate the physical
processes in the circuit over time. As discussed in the first
part of the article series the currents and voltages are
related:

. E®)-Uc(®) . dUc(t)
in(t) = === ic() = C—
So state changing depends on the current state:

E®) —Uc(t
dUC(t) = %dt
We can assume the capacitor is initially discharged:

Uc(0) = 0.

Of course, it is also necessary to replace the abstract delta
functions, for example, with a pulse of finite duration and
value (so that their product is single). Also, the simulation
time will not be continuous, but divided into many small
steps.

Fig. 8. Physical modeling of RC-circuit processing of a sampled
signal sequence. See Matlab code in Appendix G.

The principle of operation of the RC-circuit is clearly
seen: each pulse of the comb, due to its very large value,
very quickly affects the charge of the capacitor (raising it to
a significant level). After that, the capacitor discharges more
slowly (because of its accumulated voltage is less than
prompting pulse) until the next correction pulse, which
charges it again, and so on.

Although the signal differs from the original, but it still
reminds him.

In practice, much better low-pass filters are used, which
give a result quite close to a sinc-filter.

V. DISCRETE FOURIER TRANSFORM - DISCRETE
SPECTRUM FOR A FINITE NUMBER OF SAMPLES

Summary, the spectrum of the sampled signal (peaks of
the sequence of delta functions scaled to the samples values)
is continuous, as is the original; and differs because of
multiple copies at a distance corresponding to the
time/sample rate.

From these samples, the original continuous signal can be
accurately restored in some conditions.

But is it possible to discretize the spectrum so that it

18

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

represents only a set of samples also? In this case, we again
will not have to deal with continuous functions and we will
be able to process them on digital devices.

The spectrum can be calculated from the readings
directly:

Ssampled (w) =

1 .
— f s(t)e “tdt
T

=\/% fs(t) i 8(t — nT) eI dt
\/_ z fs(t)5(t—nT)e —jot gt

== z s(nT)eonT
\V2m e

1 < .
— Z sne—]mnT
\V2r —
If the number of available samples is finite (for example,

from 0 to N — that we always have in real world), we
respectively change the limits of summation:

1 .
Ssampled ((1.)) = EZ Sne_]wnT
n=0

Consider for this case the spectrum samples S, at some

mk

selected frequency points W= ZN—T:

N-1

2k _
S = S(W) Z spe]NTknT Z s,e”’

They are mterestlng because of all the samples of the
original sequence can be calculated only from them, without
using all the other points and intervals of the continuous
spectrum:

N-1 N-1 /N-1 2
2T (2T
j—— = km
N

k=0 k=0 =0
-1 N-1
— Sm elw(m—n)k
m=0 k=0
N-1 N-1
'Z—H(m—n) g
=] Sm [ej N]
m=0 k=0 —/——————
ag

—_— —
geometric progression sum
Sum of N numbers (0..N-1) of geometrical progression a
in last equation is:

N-1 1—a"
_ , k+1
a* = 1—a
k=0 N, k=1
]N(m n)XN
= , m+n
" 1-a
N, m=
(——————
/_Aﬁ
Lnteger
= [1 _e]2n(m n)
s m#n
1—a
N, m=n
_{0, m+n
Wy, m=n
So:
N-1 N-1 0
m¥*n
Sie Zsmx Nm_n=N><sn
k=0 m=0

This pair of one-to-one transformations that bind a finite
number of samples of a discretized signal and a discretized
spectrum is called the Discrete Fourier transform (DFT) or

Discrete in time Fourier transform.
N-1

Sk = Z sne_j(zﬁn)kn
n=0

1_N—1 ,
2T
N Z Ske]Wkn
N
k=0

That is, we can use not the entire continuous spectrum,
but only a small set of fixed points in it (number is equals to
number of time samples), applying transformations and
filters only to them.

At the same time, for real-valued signals only one half of
the spectral samples is sufficient for restoring due to the
conjugate symmetry (exact equality of the i-th and (N-1)-th

reference):
N-1 N-1

sne—j(%")(w—n)k _ z Sne—jan+j(ZW")kn

n=0 n=0
N-1

(2TC
= Sne+](T)kn = Sk*
n=0 i
Briefly Discrete Fourier transform also could be written
in vector/matrix form:

Sn-k =

S = Fs,where F,, =e - m-1)(n-1)

1 1 1 51

1 e‘sz”“ e‘sz"XZ —jN T (N-1) /Sz

2 2 53

=|1 e—jwnxz e—jwnxs —I—XZ(N 1) | 54
\1 P I & T VIR & SN 1)/ \s,v

19

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

a) Signal s(t) = rectangularPulse(0, 1, 1)
1
NANANNANNN
WAVAWAWAWAWIWAW Signals()
% sami
08 |
smess 0
06 |
E i I
04 [M M\
02 L
0 Nk
0.5 0 05 1 15 2
Time, t (sec)
b) Spectrum S(w) vs FFT
1~
Re S(w)
S
% ReRFT *
0s L % meEr
FET simmetry ine
*
*
0 T S S

Re S(f), Im S(f)

E I I I I I L L L L)

Frequency, f (Hz)

Fig. 9. Comparison of spectra: a continuous signal of a
rectangular pulse and sampled spectrum frequencies of a sampled
signal. Signal and its discretization shown at (a), and signal
spectrum in comparison with DFT. One can see the symmetry
(redundancy) of the DFT and the deviation of the points of the
spectrum of the discretized signal from the line of the spectrum of
the continuous signal due to the imposition of copies. See Matlab
code in Appendix H.

There are algorithms that allow to find these spectral
samples very quickly Fast Fourier Transform (FFT). The
number of operations in them can be proportional to N log N
for the number of samples N. They are implemented in
various software products as standard functions [8].

VI. CONCLUSION

Thus, a continuous signal (if it’s spectrum can be limited
by acceptable bounds) can be turned into a set of samples,
from which it can then be restored (if necessary or after
processing). The number of samples directly depends on the
selected boundaries of the used signal spectrum.

Moreover, for practical purposes the number of samples
will be finite, which means that a finite number of samples
of the sampled signal spectrum can be stored or processed.

Therefore, continuous signals of the real world can be
turned into sets of numbers and processed by digital
computing devices, as well as transmitted between them by
any convenient means, including those with suitable
modulation and at suitable frequencies.

That is the theme of the next part of article series.

APPENDIX

A. Dirac Comb spectrum calculations

0

1 .
blw) = _\/211 Z e/ ={q,=e
n=-o

ijmT}

1 i S
=— Q"+ Zqz‘“ - 1
Zn n=0 n=0

Correspond to

Geometrical Geometrical =0
progression 1, progression 2,
Positive k Negative k
Geometrical progression partial sum:
n-1
=,
k=0)
n, q=1 o etT =1 o wT = 277, rer
={1-q"
; *1
1-¢q E

This sum sequence doesn’t convergent in the usual sense
because of infinite oscillating. In this cases under the limit
could be understood Cesaro summation (as limit of average
partial sum):

Cesaro . 1 . 1 R
Zan=A<=>A=A1’1_r)ro10N Sn=1\lll_r)r(}oNZZan

k=1 n=1 n=1 k=1

N+1
(1< __N(2 Ny s
L N2 == o =) nr
N STl_ n=1
=1 1_e+}an

Separately operating for case a)T * 2mr:

Sn q”
N Z

n=1_
Geometrical
progression 3

1
“Ni-9 N= 0 1q)

Partzal sum af 3

1 1-
T1-q qN(l - q)?
The limit for each progression is:

1—q 1 B)
N 1—q “Nd-q)
\)

N
1
m D S
n=1
{ . N+1
! IlgrgoTzw, wT = 2nr
I @
=4 1 N Y L l
(A-q) weN (1-q2 Q-ewery %F

L Const #0

-0
The limit of sum of Geometrical progressions 1 and 2:
T = 2nr

1 lim (N +1) = oo,
lim — E Sa+S2) = 1 1
N-oo N (Sn +52) —— + —_— else
n=1 (1 — e}wT) (1 —e]u)T)

Separately operating for case wT # 2nr:

20

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

1 1

=) (l=e
A —eor)

(1—e o) (1—e/®T)(1— e JoT)
2 — (/9T + e7/oT)
1-eJoT —eloT + g0
2 — (e/oT 4 e7JoT) '
2 — (eJ@T 4 e=JoT)

ij)

So,

[ee)

1 .
Z e—]amT
VZnn:_

1 2\ _
i
_ {oo, wT = 21rr
— Lo, else

Let explore integral in some range around some point
wT =2nr,r € Z:

D(w) =

a1/ Zoslfy
[b=t | (z)
Zr-1/y) —(r Uy T
Zotfy [-
1 J ZS . .
= e}wnT +Z e—)wnT
'Zﬂz_n(r_l/) n=1 n=1
T 2 Positive n Negativen
+ 1 \\da
Corres\i;ond to
n=0
—(7+1/z)
Z f (e]wnT+e jwnT)dw
V2 L P 1
Ta+l/y)
T(r+1/z)
- f d
— w
v2n2n
S r+1/y)
1 < T (wnT) 5y
cos(wn e
:—Z d +L
2mla 2 V2
T(r_l/z)
V2r

T
T %Z: %(sm (— (r+ 1/2)nT)
EE
T

= sm((r— 1/2)nT))
V@
= §
4L > ! < @nnr +)
——) —— | sin(2enr + nn
\2m o] 2nT —
V2m
— sin(2nnr — nn)) ==
0

That is, the area (integral) of the function in a
neighborhood of points where it is nonzero is finite.
So, thisis a scaled delta function:

o= 3 e I S (20

n=-—co
B. Matlab code: Sampling example (Figure 1)
% Sampling singnal examle

%% Settings

= @(t) rectangularPulse(0, 2, t); % signal func

Tmax = 3;
dt = 1/5;
accuracy = 500;

% max plot time
% samplting time
% continuous time steps

%% Processing

= @(t) ones(size(t));
timeline = linspace(0, Tmax, 500);
plot
t_samples

% ones-vector
% timeline to
= 0:dt:Tmax; % sampling timeline
%% Plotting

figure();

% plot signal

subplot(2, 2, 1); hold on; grid on;
title("a) Signal continuous s(t)");
xlabel ("Time, t*); ylabel("Value®);
axis([0 Tmax -0.5 1.5]);

plot(timeline, s(timeline),
signal®);

"DisplayName®, "s(t)

% plot signal

subplot(2, 2, 2); hold on; grid on;
title("b) Signal values s(nT)");
xlabel ("Time, t"); ylabel("Value®);
axis([0 Tmax -0.5 1.5]);

scatter(t_samples, s(t_samples), "*°,
"DisplayName®, "s(t) signal®);

% plot comb

subplot(2, 2, 3); hold on; grid on;
title("c) Sampling comb d(t)*);
xlabel("Time, t*); ylabel("Value®);
axis([0 Tmax -0.5 1.5]);

stem(t_samples, e(t_samples),
"sampling®);

"DisplayName*®,

% plot samples

subplot(2, 2, 4); hold on; grid on;
title("d) Sampled signal s {sampled}(t)");
xlabel ("Time, t"); ylabel("Value®);
axis([0 Tmax -0.5 1.5]);

stem(t_samples, s(t_samples),
"s_sampled®);

"DisplayName*®,

C. Matlab code: Dirac comb visualization (Figure 2)
% Sampling comb visualization

%% Settings

Tmax = 5; % max plot time, sec
Fmax = 5; % max plot frequency, Hz
dt = 1/2; % sampling time, sec

%% Processing
= @(t) ones(size(t)); % ones-vector

Wmax = 2*pi*Fmax; % max plot freq., rad/s
dw = 2*pi/dt; % sampling freq., rad/s
N_t = floor(Tmax/dt); % number of t-samples
N_w = Ffloor(Wmax/dw) ; % number of w-samples

t_samples = dt*[-N_t:N_t];
w_samples = dw*[-N_w:N_w];
D_scale = sqrt(2*pi)/dt;

% sampling timeline
% sampling freq.line
% frequency scaling

%% Plotting
figure();

% plot signal

subplot(2, 1, 1); hold on; grid on;

21

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

title("a) Time sampling d(t)");
xlabel("Time t, sec."); ylabel("Value®);
axis([-Tmax Tmax -0.5 1.5]);
stem(t_samples, e(t_samples), "Time
comb d(t)");

"DisplayName*®,

text(dt, 1+0.1, "1°, “HorizontalAlignment®,
"center®, "VerticalAlignment®, “bottom®);
text(dt/2, -0.3, "T", “"HorizontalAlignment®,
"center”);

line([O 0],[0 -0.31,

"Color®, "r", "LineStyle","-

line([dt dt],[0 -0.3],

"Color®, "r-,
"LineStyle®,"-");
line([--1 dt+ 1],[—-2 -.2], "Color®, "r-,
"LineStyle~",
line([--05 05] [.2-.05 -.2+.05], “Color®, "r-,
"LineStyle","-");
Iine([dt—-05 dt+.05],[—-2—-05 -.2+.05], “Color-,

r*, "LineStyle","-");

% plot spectrum

subplot(2, 1, 2); hold on; grid on;
title("b) Frequency sampling D(ω)*);
xlabel (*Frequency ω, rad/sec.");
ylabel ("Value®);

stem(w_samples, D_scale*e(w_samples),
"DisplayName®, “"Frequency comb d(t)");

text(dw+0.4, D_scale-0.2,
“${\sqrt{2\pi}\over{T}$");

text(dw/2, D_scale*-0.3, "${2\pi}\over{T}$",
"HorizontalAlignment®, “center®);

line([O0 0], [0 D scale* 0.3], “Color®, "r-,
"LineStyle~",

line([dw dw] [0 D scale*-0.3], “Color®, "r-",
"LineStyle®,"-");

Iine([D_scaIe* -1 dw+D_scale*.1],[D_: scale* .2
D_scale*-_.2], "Color®, "r", “LineStyle~,
line([D_scale*-.05 D_: scale* 05] [D_ scale*(2 05)
D_scale*(-.2+.05)], “Color* "LineStyle",

PN

line([dw-D_scale*.05 dw+D_scale*.05],[D_scale*(-
.2-.05) D_scale*(-.2+.05)], "Color",
"LineStyle®,"-");

r,

r,

% Interpreter for special symbols
set(groot, "defaul ttextinterpreter”, " latex");
set(groot, "defaul tAxesTickLabel Interpreter”, " latex

Sei(groot,'defaultLegendlnterpreter'
set(findall(gcf, -
property®,*FontSize"), "FontSize”

, latex™);
,10)

D. Matlab code: sampled signal spectrum visualization
(Figure 3)

%% Parameters
pulse_start = 0;
pulse_duration = 1;

N_samples = 10; % number of samples
t_min=0; % min t of a signal
t_max=3; % max t of a signal

% sampling time

t_step = t_max/N_samples;

% sampled timeline

t_dicrete = linspace(t_min, t max, N_samples);
% max time to plot signal

t_plot_max=5;

% timeline to plot signal

t_plot_range = linspace(t_min, t _plot_max,
N_samples*100);

% max frequency to plot
w_plot_max = 2*(2*pi)/t_step;

% min frequency to plot

w_plot_min = -w_plot_max;

% frequency line to plot

w_plot_range = w_plot_min: (w_plot_max-
w_plot_min)/1000:w_plot_max;

% zero-division fix
w_plot_range(find(w_plot_range==0))=0.001;

% max frequency for IFT

w_max = 2*pi/(2*t_step);

% min frequency for IFT

w_min = -w_max;

% sampling frequency

w_step = 2*pi/t_max;

% sampled frequenct line

w_dicrete = linspace(w_min, w_max, N_samples+3);

% symbolic variables:
syms t w;

symbolic function of s(t)

s_function =
rectangularPulse(pulse_start,pulse_duration,t);%

time, frequency

%% Processing

0 = @(t) zeros(size(t)); % zero-vector
e = @(t) ones(size(t)); % ones-vector
% signal

s continuous = eval(subs(s_function, t,
t _plot_ range))

% samples

s_samples = eval(subs(s_function,

% sampled signal

s_dicrete_function =

t_dicrete));

sum((s_samples) .*dirac(t-

% Spectrum —
S_function = fourier(s_function);

% Spectrum - array for plot
S_continuous = eval (subs(S_function, w,
w_plot_range));

symbolic

% Spectrum discrete - symbolic
S_dicrete_function
% Spectrum discrete - array for plot normalized
S_dicrete = eval(subs(S_dicrete_function, w,
w_plot_range))*t_step;

t, t_dicrete));

= fourier(s_dicrete_function);

s_restored_function = ifourier(S_disdis_function,

);
s_restored = eval (subs(s_restored_function, t,
t_plot_range));

yscale=ceil (max(abs(S_dicrete)));

%% a) Signal continuous
figure(l); grid on; hold on;
axis([-1 t_plot_max -0.5 1.5]);

title(["a) Signal s(t) = ° char(s_function)
sampling s_n"1);

xlabel ("Time, t (sec)");

ylabel ("s(t)");

% Signal
plot(t_plot_range, s_continuous,
"DisplayName®, "Signal s(t)");

"LineWidth®, 2,

% Sampling

scatter(t_dicrete, s_samples, "*°,
"DisplayName®, “Samples $s n$");
quiver(t_dicrete, o(t_dicrete), o(t_dicrete),
s_samples, 0, “k", "DisplayName®, “Sampled
$s_{sampled}(t)$7);

K,

% Restored

plot(t_plot_range, real(s_restored),
.7 .7], "“DisplayName®, “Restored
$s_{restored}(t)$7);

"Color-,

", and

[.7

22

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

legend("Location®, “best");

%% b) Signal spectrum -

% 3D

figure(2); grid on; hold on;
xhim([w_plot_min w_plot_max]);
view(b5, 25);

title(["b) Spectrum of a signal $S(\omega)$="
char(S_function)]);

xlabel ("Frequency ω, rad/s");

ylabel ("Re $S(\omega)$™);

zlabel ("Im $S(\omega)$™);

plot3(w_plot_range, real(S_continuous),
imag(S_continuous), “k"); % 3D curve
plot3(w_plot_range, real(S_continuous), -
e(w_plot_range), “rv); % Re
plot3(w_plot_range, 1.5*e(w_plot_range),
imag(S_continuous), "b"); % Im

% 2D
figure(3);
xbim([w_plot_min w_plot_max]);

subplot(3, 1, 1); grid on; hold on;

xlabel ("Frequency ω, rad/s");
ylabel("Re 7/ Im");

plot(w_plot_range, real(S_continuous), *
plot(w_plot_range, imag(S_continuous), *

legend("Re S(w)", “"Im S(w)");

subplot(3, 1, 2); grid on; hold on;
xlabel ("Frequency ω, rad/s");
ylabel ("Abs S(w)");
plot(w_plot_range, abs(S_continuous), "m"); % Abs
subplot(3, 1, 3); grid on; hold on;

xlabel ("Frequency ω, rad/s");

ylabel ("Anlge S(w)*);

plot(w_plot_range, angle(S_continuous), "g");% Ang

%% Spectrum of signal dicrete
figure(d);
grid on; hold on;

xhim([w_plot_min w_plot_max]);
view(b5, 25);

title("c) Spectrum $S_{sampled}(\omega)$ of
sampled signal $s n$");

xlabel ("Frequency ω, rad/s");

ylabel ("Re $S(\omega)$”);

zlabel ("Im $S(\omega)$™);

plot3(w_plot_range, real(S_dicrete),
imag(S_dicrete), “k%); % 3D curve
plot3(w_plot_range, real(S_dicrete), -
e(w_plot_range), "r°); % Re
plot3(w_plot_range, 1.5*e(w_plot_range),
imag(S_dicrete), "b"); % Im

figure(b);

% Re - Im

subplot(3, 1, 1);

grid on; hold on;
xhim([w_plot_min w_plot_max]);
ylim([-yscale yscale]);

xlabel ("Frequency, ω (rad/s)");
ylabel("Re 7 Im $S_{sampled}(\omega)$");

plot(w_plot_range, real(S_dicrete), °r-°)
plot(w_plot_range, imag(S_dicrete), "b")

line([2*pi/(2*t_step) 2*pi/(2*t_step)], [min(ylim)

max(ylim)], “Color®, k", "LineWidth®, 2);
line([-2*pi/(2*t_step) -2*pi/(2*t_step)],
[minCylim) max(ylim)], “Color®, "k", "LineWidth",
2);

% Abs

subplot(3, 1, 2);

grid on; hold on;
xbim([w_plot_min w_plot_max]);
ylim([-yscale yscale]);

xlabel ("Frequency ω, rad/s");
ylabel ("Abs S(w)");

plot(w_plot_range, abs(S_dicrete), "m"); % Abs
line([2*pi/(2*t_step) 2*pi/(2*t_step)], [min(ylim)
max(ylim)], “Color®, k", "LineWidth®, 2);
line([-2*pi/(2*t_step) -2*pi/(2*t_step)],
[minC(ylim) max(ylim)], “Color®, "k", "LineWidth",
2);

% Angle

subplot(3, 1, 3);

grid on; hold on;
xhim([w_plot_min w_plot_max]);

xlabel ("Frequency ω, rad/s");
ylabel ("Anllge S(wW)");

plot(w_plot_range, angle(S_dicrete), "g"); % Ang.
line([2*pi/(2*t_step) 2*pi/(2*t_step)], [min(ylim)
max(ylim)], “"Color®, "k", "LineWidth®, 2);
line([-2*pi/(2*t_step) -2*pi/(2*t_step)],
[min(ylim) max(ylim)], “Color®, “k®, “LineWidth-®,
2);

%% dicrete spectrum of disceted signal
figure(6);

grid on;hold on;

xBim([w_min w_max]);%ylim([-yscale yscale]);

title("d) Sampled spectrum of sampled signal®);
xlabel ("Frequency, w (rad/s)");
ylabel("Re Sd(w), Im Sd(w)*");

% dicrete spectrum of dicrete function

S _samples = eval(subs(S_dicrete_function, w,
w_dicrete))*t_step; % samples normalized
S_disdis_function = sum((S_samples).*dirac(w-
w_dicrete))*2;

% Re-1Im

plot(w_plot_range, real(S_dicrete), “Color®, [1
0.7 0.7]);

plot(w_plot_range, imag(S_dicrete), “Color®, [0.7
0.7 11);

quiver(w_dicrete, o(w_dicrete), o(w_dicrete),
real (S_samples), 0, "r");
quiver(w_dicrete, o(w_dicrete), o(w_dicrete),
imag(S_samples), 0, "b");

%% Design: total

set(groot, "defaul ttextinterpreter”, "latex");
set(groot, "defaul tAxesTickLabel Interpreter”, " latex
"

set(groot, "defaultLegendInterpreter”, "latex”);
set(findall(gcf, "-

property*, "FontSize"), "FontSize*,10)

E. Matlab code: signal restoring from the samples
(Figure 4)

%% Parameters
syms t w;

23

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

s = rectangularPulse(0, 2, t); % signal sym func

Tmax

= 3; % max plot time
Fc = 2;

% sampling freq.

%% Processing

0 = @(t) zeros(size(t)); % zero-vector

Wc = 2*pi*Fc; % sampling angular freq.
dt = 1/2/Fc; % sampling time step

dw = 1/dt; % sampling frequency step
N = Tmax/dt; % number of samples

Mmin = O; % samples start

Mmax = Tmax/dt; % sampled finish

t_samples = dt*[Mmin:Mmax]; % sampling timeline

% plot timeline

t_plot = linspace(-Tmax, Tmax, 500);
% plot frequency-line

f_plot = linspace(-3*Fc, 3*Fc, 500);

% Spectrum - array for plot
Sw = eval(subs(fourier(s), w, 2*pi*f_plot));

% samples

s_samples = eval(subs(s, t, t_samples));

% sampled signal

s_dicrete_function = sum((s_samples).*dirac(t-
t_samples));

% Spectrum discrete - symbolic

S_dicrete_function = fourier(s_dicrete_function);

% Spectrum discrete - array for plot normalized
S_dicrete = eval(subs(S_dicrete_function, w,
2*pi*f_plot))*dt;

%% Spectrum
figure(Q;
hold on; grid on;

title("b) Spectrums®);
xlabel ("Frequency F, Hz");
ylabel ("Spectrum value®);

plot3(f_plot, real(Sw), imag(Sw), “k-°,
"DisplayName®, *S(f)");

plot3(f_plot, real(S_dicrete), imag(S_dicrete),
"r*, "DisplayName®", "S_{discrete}(f)");
plot([-3*Fc -Fc -Fc Fc Fc 3*Fc], [0 O

max(real (Sw)) max(real(Sw)) 0 0], "b-",
"DisplayName®, *"Sinc H(F)");

legend("Location®, "best");

%% Signal
figure();
hold on; grid on;

title("a) Signal s(t) and restored s*(t)");
xlabel ("Time t, sec.);
ylabel ("Value®);

plot(t_plot, eval(subs(s, t, t_plot)), “k-,
"LineWidth®, 2, "DisplayName®, "s(t)"); % signal

x = o(t_plot);
for i=Mmin:Mmax

T = eval(subs(s, t, dt*i))*sinc(Wc*(t_plot-
dt*i)/pi);

X = x+F;

plot(t_plot, f, ":", "DisplayName~,
strcat(“sinc(t-", num2str(dt*i),")"));
end
plot(t_plot, x, “r", “LineWidth", 2,
"DisplayName®, "s {restored}(t)");

scatter(t_samples, eval(subs(s, t, t_samples)),
"**, "DisplayName®", "samples®);

| legend("Location”, "northwest");

F. Matlab code: RC-response spectrum (Figure 5)
% RC response spectrum

%% Signal parameters

syms t;

s = rectangularPulse(0, 2, t); % signal sym. Func.
Tmax = 3; % max plot time

Fc = 2; % sampling freq.

%% Frequencies plot parameters

O = -5; % show frequency from, Hz
fl = 5; % show frequency to, Hz
steps = 1000; % frequency accuracy step

%% RC-circuit parameters
100; % R = 100 Om
5e-3; % C =5 mF

R
(0
%% Processing response

% frequency line

w = 2*pi*linspace(f0, fl1, steps);
% cutoff frequency

w0 = 1/R/C;

% response function
H=@w) 1./(1+j*w*R*C);
% response vector
HC=HW);

e = @(t) ones(size(t)); % zero-vector
%% Processing signal spectrum

t _plot = linspace(-Tmax, Tmax, 500); % timeline

dt = 1/2/Fc; % sampling time step
t_samples = dt*[0:Tmax/dt]; % sampling timeline

S_continuous = eval(fourier(s));% Spectrum array

s_samples = eval(subs(s, t, t_samples)); % samples
s_discrete_function = sum((s_samples).*dirac(t-
t_samples)); % sampled signal

% Spectrum discrete symbolic
S_discrete_function =
fourier(s_discrete_function);

% Spectrum discrete

S_discrete = eval(S_discrete_function)*dt;

%% Spectrum
figure();

subplot(2, 1, 1);
hold on; grid on;

title("b) Spectrums®);

xlabel ("Frequency w, rad/sec");
ylabel ("Re");

zlabel ("Im™);

plot3(w, real(S_continuous), imag(S_continuous),
"k®, "DisplayName®, *S(w)");

plot3(w, real(H(w).*S_discrete),

imag(H(w) .*S_discrete), “r", “DisplayName~,

*S {restored}(w)");

legend("Location®, "best");

subplot(2, 1, 2);
hold on; grid on;

xlabel ("Frequency w, rad/sec®);
ylabel ("Re");
zlabel ("Im™);

plot3(w, real(S_discrete), imag(S_discrete), "m",
"DisplayName®, *"S_{discrete}(w)");

24

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

plot3(w, real(H(w)), imag(H(w)), "b",
"DisplayName®, “"HW)");
legend("Location®, "best");
%% Plotting 2D

figure(Q;

% Abs
subplot(3, 1, 1);
hold on; grid on;

title("a) RC-response H(w)=U_c/U");
xlabel ("Frequency w, rad/sec®);
ylabel (" [H(W) | ");

plot(w, abs(H_C), "DisplayName®, "H(w) abs®");
stem([-wO wO], [power(2, -1/2) power(2, -1/2)],
*filled®, "DisplayName®, "w_{cutoff}");
legend("Location®, "best");
% Abs

subplot(3, 1, 2);

hold on; grid on;

xlabel ("Frequency w, rad/sec");
ylabel ("angle, rad/sec");

plot(w, angle(H_C), "DisplayName®, “"H(w) angle®);
stem([-wO wO0], [angle(H(-w0)) angle(H(wO))1,
*filled®, "DisplayName®, "w_{cutoff}");
legend("Location®, "best");
% Re, Im

subplot(3, 1, 3);

hold on; grid on;

xlabel ("Frequency w, rad/sec");
ylabel("Re, Im");

plot(w, real(H_C), "DisplayName®, "H(w) real®);
plot(w, imag(H_C), “DisplayName®, "H(w) imag®);
stem([-wO0 w0], [real(H(-w0)) real(H(w0))],
"filled", "DisplayName®, "w_{cutoff}");
stem([-wO0 wO0], [imag(H(-w0)) imag(H(wO))1,
"filled®, "DisplayName®, "w_{cutoff}");

legend("Location®, "best");

G. Matlab code: RC-circuit signal restoring (Figure 6)

%% Time parameters
T _start = 0;
T_end = 3;

% start time, sec
% Finish time, sec

% continuous time accuracy step
dt_continuous = (T_end-T_start)/1000;
F_sampling = 2; % sampling frequency, Hz
%% RC parameters

100;
5e-3;

% 2 Om
% 5 mF

R
C
%% Signal parameters

syms t;
U_symbolic = rectangularPulse(0, 2, t); % signal

delta_duration = dt_continuous*5; % delta-impulse
delta_value = 1/delta_duration;

%% Processing signal

% timeline

t_continuous = T_start:dt_continuous:T_end;
% null time vector

0 = @(t) zeros(size(t));

dt_sampling = 1/2/F sampling;
t_samples = T_start:dt_sampling:T_end;
N_samples (T_end-T_start)/dt_sampling;

U_continuos = eval(subs(U_symbolic, t,
t_continuous));

U_samples = eval(subs(U_symbolic, t, t _samples));

%% Real delta-output
U_out = o(t_continuous);
% Scaled delta grid
for i=0:N_samples
current_time = i*dt_sampling;
U_sample = eval(subs(U_symbolic, t,
current_time));
U_out = U_out +

U_sample*delta_value*rectangularPulse(current_time

, current_time+delta_duration, t_continuous);
end

%% Processing CR-circuit: step-by-step modeling
UucC=(0);
for 1 = 1l:size(U_out, 2)-1
du_C = (U_out(i)-U_C(i))/R/C*dt_continuous;
U _C(i+1) = U _C(i)+dU_C;
end

%% Processing sinc-filter

% W_sampling = 2*pi*F_sampling;

U_LPF = (0);

for i=1l:size(U_out, 2)
current_time = 1/2/F_sampling;

T = eval(subs(U_symbolic, t, current_time)) *

sinc(2*F_sampling*(t_continuous-current_time));
U LPF = U LPF + f;
end

%% Plot a: RC modeling voltage
figure(Q;

axis([T_start T_end -1 max(U_C)+1]);

% subplot(2, 1, 1);

hold on; grid on;

title("a) Voltages in RC-circuit®);

xlabel ("Time t, sec."); ylabel("Voltages u(t),
V)

plot(t_continuous, U_continuos,
"U_{continuous}");
stem(t_samples, U_samples, “DisplayName”®,
"Samples®);
plot(t_continuous, U_out,
"U_{sampled}");
plot(t_continuous, U C,

"DisplayName*®,

"DisplayName*®,

"DisplayName*®,

"U {restored}"); % plot
voltage

plot(t_continuous, U_LPF, "DisplayName®,
"U_{sinc}"); % plot

voltage
legend("Location”®,

H. Matlab code:
DFT (Figure 7)
Ffigure(C"units®, "normalized®, "outerposition”, [0
0.5 11;

"best®);

%% Parameters

%Signal

syms t;

% symbolic signal t
s_function = rectangularPulse(0, 1, t);
% Symbolic expression, Fourier function
S_function = fourier(s_function);

% t - symbolic variable

% Time parameters
N_counts = 20;
N_plot = 500;

% number of samples
% plot accuracy

comparing continuous spectrum and

0

25

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no.7, 2019

Tmax=2;
Tmin=0;

% plotting start time
% plotting end time

%% Processing

% sampling time step

dt = (Tmax-Tmin)/N_counts;

% plot timeline

t_plot = linspace(Tmin, Tmax, N_plot);
% sampling timeline

t_samples = dt*(0:N_counts-1);

0 = @(t) zeros(size(t)); % zero-vector

%% Fourier processing

% Plot frequency line
f_plot = linspace(-1/dt, 1/dt, N_plot);
f_plot(f_plot==0)=0.0001; % zero-division fix

% Sampling frequencies
f_samples = linspace(0, 1/dt, N_counts);
T_samples(f_samples==0)=0.0001;% zero-disivion Tix

% Evaluate symbolics spectrums
% Continuous

w = 2*pi*f_plot;

S_continuous = eval(S_function);
% Spectrum samples

w = 2*pi*f_samples;

S _samples = eval (S_function);

% Signal sampled
s_sampled = eval (subs(s_function, t, t _samples));

%% Signal plot

subplot(2, 1, 1);
grid on; hold on;

title(["a) Signal s(t) = ° char(s_function)]);
xlabel ("Time, t (sec)");

ylabel ("s(t)");
% signal
plot(t_plot, eval(subs(s_function, t, t_plot)),

k)

% samples

scatter(t_samples, s_sampled, "*°,
% sampled signal
quiver(t_samples,
s_sampled, 0, "m");

"k*);

o(t_samples), o(t_samples),

legend("Signal s(t)", “Samples s n®,

s {sampled}(t)");

"Sampled

%% Plot spectrums
subplot(2, 1, 2);
grid on; hold on;

xhim([-1 1/dt]); % limited axes

title("b) Spectrum S(w) vs FFT®);
xlabel ("Frequency, f (Hz)");
ylabel("Re S(F), Im S(F)");

% Spectrum
plot(f_plot, real(S_continuous), "r-);
plot(f_plot, imag(S_continuous), *b*);

% FFT plotting
fft_S = fft(s_sampled)/N_counts*2; % Normalization

scatter(f_samples, real(fft_S), "*",
scatter(f_samples, imag(fft_S), "*-,

r'); % Re
"b*); % Im

% Symmetry line

plot([1/2/dt 1/2/dt], [-1 1], “k");
legend("Re S(w)*", “Im S(w)*,
"FFT simmetry line®);

"Re FFT", "Im FFT",

REFERENCES

[1] E. Tikhonov, M. Sneps-Sneppe. “Introduction to signal processing:
sine wave and complex signals”, International Journal of Open
Information Technologies, Vol. 7, No 3, March 2019, ISSN 2307-
8162

[2] E. Tikhonov, M. Sneps-Sneppe. “Introduction to signal processing:
spectral representation”, International Journal of Open Information
Technologies, Vol. 7, No 4, April 2019, ISSN 2307-8162.

[3] Lyons, Richard G., “Understanding digital signal processing”, 3rd ed.,
Library of Congress Cataloging-in-Publication Data, 1948, ISBN 0-
13-702741-9

[4] Kotelnikov VA, “On the transmission capacity of "ether" and wire in
electrocommunications”, ~ (English translation, ~ PDF, url:
http://ict.open.ac.uk/classics/1.pdf), lzd. Red. Upr. Svyazzi RKKA
(1933), Reprint in Modern Sampling Theory: Mathematics and
Applications, Editors: J. J. Benedetto und PJSG Ferreira, Birkhauser
(Boston) 2000, ISBN 0-8176-4023-1

[5] Robert J. Marks II, Introduction to Shannon Sampling and
Interpolation Theory, Springer-Verlag, New York, 1991. Available:
https://marksmannet.com/RobertMarks/REPRINTS/1999 _Introductio
nToShannonSamplingAndInterpolationTheory.pdf. Retrieved: May,
2019

[6] Kharkevich A.A., “Essays on the general theory of communication”
(Russian), State publishing house of technical and theoretical
literature, Moscow, 1955

[7] llyin V.A., Sadovnichy V.A, Sendov BI.H. "Real Numbers //
Mathematical Analysis" (Russian), 3rd ed. pererab. and add. / Ed.
Tikhonov A. N., Prospect, Moscow 2006, ISBN 5-482-00445-7

[8] Emmanuel C. Ifeachor (2011) “Digital Signal Processing A practical
approach download”. Prentice Hall; 2 edition (October 7, 2001),
ISBN-10: 9780201596199

26

	I. INTRODUCTION
	II. Digital voice transmission
	III. Discrete signals
	A. What is a discrete signal
	B. How the signal changes if only samples are used from it

	IV. Kotelnikov Theorem: continuous signal recovery from the samples
	A. Restoring with the ideal low pass filter
	B. Restoring with not ideal low pass filter

	V. Discrete Fourier Transform - Discrete spectrum for a finite number of samples
	VI. Conclusion
	Appendix
	A. Dirac Comb spectrum calculations
	B. Matlab code: Sampling example (Figure 1)
	C. Matlab code: Dirac comb visualization (Figure 2)
	D. Matlab code: sampled signal spectrum visualization (Figure 3)
	E. Matlab code: signal restoring from the samples (Figure 4)
	F. Matlab code: RC-response spectrum (Figure 5)
	G. Matlab code: RC-circuit signal restoring (Figure 6)
	H. Matlab code: comparing continuous spectrum and DFT (Figure 7)

	References

