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Abstract— In this work, we derive asymptotics of solutions 

of ordinary differential equations with holomorphic coefficients 
in the neighborhood of infinity.  

This problem represents a particular case of the general 
problem of constructing asymptotics of linear differential 
equations with irregular singularities, namely the Poincare 
problem. The case of infinitely distant singular point is an 
example of irregular singularity and the problem of derivation 
of asymptotics of its solutions is reduced to the problem of 
constructing asymptotics of solutions in the neighborhood of 
zero of linear differential equations with the cusp-type 
singularity of the second order. If the principal symbol of 
differential operator has simple roots, then asymptotics of 
solution of equation in the neighborhood of an irregular 
singular point can be represented as a classic non-Fuchs 
asymptotics, which is a familiar fact. In the case of multiple 
roots, the method of repeated quantization is used. The method 
is based on the Laplace-Borel transform. Using repeated 
quantization in this paper we solve the problem of derivation of 
asymptotics of solutions in the neighborhood of infinity for a 
model problem whose singularity index has a special form. The 
derived asymptotics of solutions differ from the classic non-
Fuchs asymptotics and represent their generalizations. The 
method of solution of this model problem in its essential part is 
transferred to the general case. Thus, this work is one of steps 
in solving Poincare problem. 
 

Keywords—differential equations with cuspidal singularitus, 
Laplas-Borel transformation, resurgent function, principle 
operator symbol, asymptotic expansion. 
 

I. INTRODUCTION 
The work aims to analyze methods for constructing 

asymptotic solutions in ordinary differential equations with 
holomorphic coefficients with degeneracies. Namely, we 
study ordinary differential equations with holomorphic 
coefficients  
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here, ( )rbi  are holomorphic functions. 
If the coefficient of the highest derivative ( )rbn  vanishes 

at some point, without loss of generality, it can be assumed 
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that this point is 0=r , then the equation (1), generally 
speaking, has a singularity at zero. In this case, zero can be a 
regular or irregular singular point. The problem of 
representing asymptotic solutions to an equation with 
holomorphic coefficients near an irregular singular point was 
first formulated by H. Poincaré in [1], [2]. In these papers, it 
was first shown that the solution of an equation with 
holomorphic coefficients near an irregular singular point in 
some cases can be decomposed into an asymptotic series. 
One of the possible methods for summing the asymptotic 
divergent series - using integral transforms - was also 
formulated by Poincaré in [2]. As the integral transform, 
Poincaré used the Laplace transform, but it is applicable 
only in some special cases. In this paper, the Laplace-Borel 
transform, which was introduced by Ecalle in [3] and is the 
basis of resurgent analysis, will be used to sum the 
corresponding asymptotic series. 

Thome's work was one of the first papers, considering the 
problem of making asymptotic solutions in the vicinity an 
irregular singular point [4]. An equation with holomorphic 
coefficients is considered. 
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here, the coefficients ( )xai  are regular at infinity, this means 
that there is such an exterior of the circle ax > that the 

functions ( ) 1,...,1,0, −= nixai  decompose in it into 

convergent power series ( ) ∑
∞

=

=
0j

j

j
i

i x
bxa . Our study aims at 

making asymptotic solutions of the equation (2) in the 
vicinity of infinity. 

 

II. MAIN RESULTS 
 

Let’s note that the equation (1) can be reduced to an 
equation, looking like this 

,0,ˆ =





 −= u

dr
drrHuH k  (3) 

where Ĥ  is a differential operator with holomorphic 
coefficients  
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Here, ( )rai  are holomorphic functions, and ( ) 00 ≠na . In 
[4], it was shown that one can find a minimum integer 
nonnegative k and a formula for calculating this minimum 
value k was obtained. The equation (3) is called the equation 
with the cuspidal degeneration of the k-th order. 

By replacement of 
r

x 1
= , the problem (2) also reduces to 

the equation (3) for the case, when 2=k . In other words, 
the problem of constructing asymptotic solutions of the 
equation (2) at infinity requires to study the equation with a 
second-order cuspidal degeneracy. In this case, 
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In the beginning, we will consider the case, when the 
principal symbol of a differential operator ( )pH ,0 , has one 
root; without loss of generality, we assume that this root is at 

zero. It follows that in this case ( ) ∑
∞

=

=
1j

j
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Let’s write the equation (2) as 
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Here, kmjh kj +>+ . Let's kmh k +=  call the 

singularity index; in other words, members of 
i

ji
j dr

drra 





 2  

provided that hij >+  are the minor members. Let's divide 
them into two types. To the first type, let’s assign members, 
for which jh ≥ , and to the second type – jh < . In this 
article we will consider a special case of this problem. We 
will consider the case, when 1=km ; i.e., the singularity 
index is k+1 . This equation is a model, and the asymptotics 
construction at infinity is an important step in solving the 
problem of constructing asymptotic solutions of the equation 
(3) in the general case. 

The method of constructing the asymptotic solutions of 
the model problem is largely carried over to the general 
case. We show that will be fair 

THEOREM. The asymptotic solution of the equation (2) 
with ∞→x  is 
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where knjj
kn −=−− ,...,1,1α  are polynomial roots 
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are some numbers; if  hn ≤ , then jiA j
l ,,0 ∀= . 

 

This theorem is the main result of this paper; the proof of 
this theorem is given below. 

Proof. 

Without loss of generality, let's assume that the equation 
includes only one term of the first type and one term of the 
second type, namely 
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Here, the last two terms belong to the lower members; one 
of them belongs to the first type, and the second to the 
second type. We will look for the asymptotic solution of the 
equation (7) in the vicinity of zero, using the repeated 
quantization method, see [6]. 

The proof of the theorem can be divided into several 
stages. At the first stage, the equation is transformed, using 
the Laplace-Borel transform, and the singular points of the 
transformed equation's solution are determined. At the 
second stage, using the repeated quantization method, 
asymptotic solutions are made near singular points; then the 
inverse Laplace-Borel transform from the asymptotics is 
taken. 

Let's recall the definition of the Laplace-Borel transform. 

Let’s denote { }RrrrSR <<<−= ,arg, εεε  by sector 

ε,RS . We will seek a solution to the equation (7) in the space 
( )ε,Rk SE  of holomorphic functions in the domain ε,RS  that 

grow k-exponentially at zero. 

By the ( )ε,

~
RE Ω , let’s denote the space of holomorphic 

functions of exponential growth in the domain 









>+<<−−=Ω RpppR ,
2

arg
2

~
, επεπ
ε ; by ( )CE , the 

space of entire functions of exponential growth will be 
denoted.  

k -th Laplace-Borel transform of the function 
( )ε,)( Rk SErf ∈  is called a function 

( ) )/E(C)~ E(: ,, εε RRkk SEB Ω→  
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The inverse Laplace-Borel k-transform is defined by the 
formula 

∫=−

γπ ~
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The loop γ~ is depicted in Fig. 1, in [7]. 

Let’s apply the Laplace-Borel transform to the equation 
(7), see [8]. The converted equation (7) will look like this 
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Here,  f  is an arbitrary holomorphic function. Let's consider 
the case hn < . Let’s rewrite the equation (8) as 
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Let's apply the method of successive approximations to 
the equation (9), then, just as it was done in [9], it can be 
shown that the asymptotic solutions of the equation (9) in the 
vicinity of the point 0=p  are conormal.  

Now let hn ≥ . Let's differentiate the equation k+1 times; 
we get the equation 
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Let's note that, when hn = , we obtain an equation with a 
conic degeneracy. As is known, the solution of such an 
equation has a conormal asymptotics at zero. Let's assume 
that hn > . This is the most difficult case. 

Let's multiply the equation (10) by ( )1−−knkp . It is easy to 
show that the equation (10) can be rewritten as 
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Here, 
1
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=
kn

aa , kiai ,...,1,1 = , ikjb j −= ,...,0,1  are 

corresponding numbers. Let’s note that the equation (11) 
differs from an equation of n-k order of cuspidal degeneracy; 
we only have an integral member 
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; from this it follows that 

the Laplace-Borel transform increases the multiplicity of the 
integral, so the proof of the resurgence of the solution, given 
in [7], [10] can be transferred without change to the equation 
(8). Solution of the equation (11) is a resurgent function. It 
follows that the Laplace-Borel transform can be applied to 
this equation in the same way as it was done for the equation 
(7). 
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To make asymptotic solution of the equation (11) at 
0→p , we apply the repeated quantization method [6]. To 

do this, in the equation (11), we make for the Laplace-Borel 
( )kn −  transform. The main symbol of the differential 
function on the left side of the equation (11) is 
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ac . We will find the asymptotic 

solution of the transformed equation (11). First let's find an 
asymptotic member, corresponding to the root cq = . 

Without loss of generality, let's assume that 01
1 =a . If this 

is not the case, this factor can be reset by replacing 
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Let’s find the asymptotics of the Laplace-Borel 
transform of the equation's (11) right side in the vicinity the 
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Here, by ib , the coefficients in the expansion are indicated 
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decrease. From the last equation it follows that, in the 
vicinity the point cq = , the Laplace-Borel transform of the 
equation's (12) right side is a holomorphic function. Let’s 
apply the Laplace-Borel transform to the equation (12); it 
can be rewritten as 
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Here, as before, by kiai ,...,2,2 = , some constants are 
denoted. 

LEMMA. The asymptotics of the function ( )qu~  with 
cq →  look like this 
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To construct the asymptotics of the function ( )qu~ , let’s 
apply the method of successive approximations. Let's 
imagine that near the point cq =  there is the equation’s (13) 
right side, 
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here and after, by ( )qAi , we denote holomorphic function 
near the point ,cq = ; by iC , we denote the corresponding 
constants. 

It is obvious that all the members in (13), containing 
multiple integrals, when substituting the free members into 
them, give the minor asymptotic members, for example, by 
substituting (14) into the first integral, we get  
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show that the other members give minor asymptotic 
members. Obviously, if the multiplicity of the integrals is 
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greater than or equal to two, we obtain the minor asymptotic 
members. Let’s consider the last integral. Let’s substitute the 
expression (14) into the last integral from the right side (13). 
If 22 ≥β , it is obvious that the function is a mollifier. Let 
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It follows that, when applying the method of successive 
approximations, the last integral function of (13) gives a 
convergent series in powers ( )cq − . 

It remains to consider the member 
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Let's assume that 1>i . Since the equation is fulfilled, 
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by substituting the right side (14) instead of )(~ qu , we get 
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Since 01
1

1 >−++
−−

ji
kn

β , the function (15) is a mollifier 

and, when applying the method of successive 
approximations, we get a convergent series in powers 
( )cq − . Let 1,0,1 1 −−<== knji β . This case must be 
considered separately. We have the member 
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By replacement let's move the root cq =  to zero; in this 
case, zero will be a simple root. We will solve the resulting 
equation in the same way as it was done in [11] for equations 
with simple roots. As shown in this paper, the equation will 
be performed. 

( ) ( ) pdppppupBBr k
p

knk ′′′−= ∫
∞

−
−−− 1
11 1

1 ˆ
β

β  

Since 0
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β  and 0≥k , the last integral will be a 

holomorphic function. 

Finally, we get that the asymptotic member, 
corresponding to the root cq = , looks like this  

( ) ( ) ( ) ( )∑ ∑∑
∞

=

∞

=

−−

−−

=

−−+−−
0 0

1

1

0

ln
i

i

i
i

ij
i

kn
jkn

j

cqcqCcqAcq  

Where i
j

i CA ,  are corresponding constants. The lemma is 
proved. 

Now let’s consider the singularity at zero. We have the 
equation 
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First, let's consider a special case, when the minor members 
are absent, i. e., when the equation looks like this 
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The last equation, by differencing by q k times, is 
transformed to an equation with a conic singularity, the right 
side of which has a conormal asymptotics. As is known, the 
solution of such equations has conormal asymptotics. It 
would be natural to assume that, in the general case, i. e., 
with minor members, the solution will also look like a 
conormal asymptotics. Let's prove it. 

Let's consider a group of members. 
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Let's show that this sum of integrals (17) can be represented 
as a single integral. Let's consider the sum 

( ) ( ) ( )dqquqaquqaquI kk ~~~ 1
102

−∫+=  

Let's denote ( ) ( )quqqu 1
~~ σ= . 

( ) ( )

( ) ( )

( ) ( )dqqu
dq
dq

k
aquq

k
aa

dqquqaquqa

dqquqaquqauI

kk

kk

kk

1
1

1
1

0

1
1

110

1
102

~~

~~

~~~

σσ

σσ

σσ
++

−++

−

∫

∫

∫

+
−








+

+=

=+=

=+=

 

Let's choose σ  so that 0
1 a

k
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+σ

; we get 
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We have shown that, in the case, when the sum (17) consists 
of two members, it can be represented as a single integral 
(18). 

Now let's consider a group of three members. 
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Let’s introduce the notation ( ) ( )qu
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Since the equation is fulfilled, 
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and, since we can choose σ  so that equality is fulfilled, 
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let's choose 1σ  so that equation is fulfilled 
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We finally get 
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Like the previous case, we get 
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Let’s substitute the obtained integral in the equation (16); it 
looks like this 
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Let's transform the equation (20), expressing ( )quk
~  
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To find the asymptotics of the function ( )quk
~  at 0→q , let's 

apply the method of successive approximations. 

LEMMA. The asymptotics of the function ( )quk
~  at 0→q  is 

conormal 

Proof.   
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substituting the free member into the first integral of (21), 
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From the last equation, it follows that, when applying the 
method of successive approximations, the function 1I  will 
correspond to a convergent series in powers q . If, for some 

km ≤≤1  , the equation  1
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−=+∑+
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=
m
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i
iσα  is satisfied, the 

asymptotics, corresponding to the function 1I , will look like 
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; in other words, the asymptotics 

will be conormal. 
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the free member in it 

( )

∑







∑
=

=×

×














∑
=

=

==

−

=

++
−
−−

−−

−
−

−

−−−
−

−−

∫∫∫∫
k

i
i

k

i
i

kk

k

i
i

k

knkn

k
k

k

qqqq

kn

ik

knkni
kn

k
k

qBpB
dq
dqC

dqdqdqqqqB

dp
dpppB

dq
dq

qI

101

234

1

01

2
1

2

2
1

11
1

2
1

3
1

1

1

2

......

σα
β

σ

ασσ

β
σ

α

 

here 

( )( )

.
12...12

1

...21

1

11

1

2








 +++






 +−++
×

×







 +++++
=

∑∑

∑

==

=

kik

k
C

i

k

i
i

k

i

i

k

i
k

σασα

σασαα
 

Since  

( )

( )
,

12sin121

112

11

21

1

1

−−




 +∑−+

==

∑−+−
−

=

=

×

×





 +∑−+





 +∑−+Γ−−

=

=

knk

k

i
i

k

i
i

k

kn

k

i
i

k

i
i

p

kkkn

qB

σα

σα

π

σαπσα
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It follows that, when applying the method of successive 
approximations to the equation (21), the function 2I  also 
induces a convergent series in powers q . A similar result 
can be obtained for the last integral in (21).  

We obtain the asymptotic behavior of the function ( )qu~  
with 0→q ; it is a conormal asymptotics. The lemma is 
proved. As is known [5], the inverse Laplace-Borel 
transform of conormal asymptotics is also conormal 
asymptotics. It remains to find the inverse transform of the 
asymptotic member, corresponding to the singular point 
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We will find the asymptotic member, corresponding to the 
root cq = . In [6], the asymptotics of the function's inverse 

Laplace-Borel transform 
1

2

0
−−−

−

=
∑ ikn

i
n

i pep
β

σ   with 0→r  was 
found; in this work, it has been shown that 

n
k

k

j
k

n
n

j

rp rcreepB
j

n
i

j
i

n

iin
i

n

i ∑∑
∞

==

∑
−

∑
≈

−

=−−

−

=

01

1
1

1

11

2

0

σαβ
σ  

where j
n 1−α  are polynomial roots ( ) 01

1
βn

n
np

n

n −







−
+ , and 

,,σσ i  and 2,...,1, −= nij
iα  are corresponding numbers. 

From this formula, it follows that the asymptotic solution of 
the equation looks like this 
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The theorem is proved.  

Previously, we assumed that the main symbol of the 
differential function has one root, even if it is not. Let the 
main symbol have two roots, i. e. 
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Here, ic are corresponding numbers. In this case, instead of 
the equation (7), we will have the equation  
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Let’s make the Laplace-Borel transform 
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Let’s find the asymptotic solution of the equation (23) with 
0→p ; for this, let's rewrite the equation (23) like this 
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Since the functions ( ) 1n
i

bp
a
+

 have no singularities at zero, 

the asymptotics of the solution to the equation (22) near the 
point 0=p  is obtained, using the method of successive 
approximations, similar to how it was done for the equation 
(9). To find the asymptotics, corresponding to the root b− , 
this root should be shifted to zero; this can be done by 

replacing ( ) ( )rueru r
b

1

−
=  and finding the asymptotics at zero 

as it is done above.  

Let's note that, if 1nnk −≥ , the solution will not have 
singularity; in case 11 −−= nnk , the asymptotics of the 
solution is conormal. 
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