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Some more on the equivalent transformation
of nondeterministic finite automata.

Part I. Notation and the “combining” algorithm

B. F. Melnikov

Abstract—This paper can be viewed as a continuation of our
following previous papers, where we considered some simple
algorithms for combining states of the given nondeterministic
finite automaton, the reduction some problems related to the
star-height to considering automata, and possible classification
of the states and loops of the given automaton.

In this paper, we shall describe an algorithm which combines
some states of a given nondeterministic finite automaton.
However, unlike algorithms published before, we have more
stringent requirements for two combined states of the consid-
ered automaton. Besides, we obtain (after combining these two
states) the automaton, which is not only equivalent to the given
one, but also has the value of star-height which is no more
than such value for the given automaton. We also consider an
example of using the described combining algorithm.

In the following parts of this paper, we are going to describe
the algorithms for deleting and adding a state. These algorithms
will have the same features of transformations, i.e. the values
of star-height for the obtained automata will be no more than
such value for the given automaton.

Keywords—nondeterministic finite automata, regular lan-
guages, equivalent transformations, combining states, the star-
height problem.

I. INTRODUCTION AND MOTIVATION

This paper can be viewed as a continuation of our previous
papers:
[1]: we considered there some simple algorithms for com-

bining states of the given nondeterministic finite au-
tomaton;

[2]: we considered there some applications of such algo-
rithms; in particular, we constructed any automaton
for the given regular language using special equivalent
transformations of the basis automaton (see [3] etc.) for
this language;

[4]: we described there an alternative proof of Kleene’s
theorem; on the basis of this proof, we reduced some
problems related to the star-height to nondeterministic
finite automata;

[5]: we considered there some questions of the possible clas-
sification of the states and loops of a nondeterministic
finite automaton;

[6]: we continued there the classification mentioned in the
previous item; we also defined some terms associated
with the loops of the transition graph of the basis au-
tomaton for the given regular language (i.e. we defined
so-called including loops, partially complete loops and
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complete cyclic states) and considered some properties
of these objects; after that, we formulated an important
hypothesis about them;

[7]: we led there the possible application of this theory using
the results of some papers, published before in Russian.

In the current paper, we change the process of presentation of
the whole material, provide some other proofs and consider
more examples.

By [4], we reformulated the star-height problem for reg-
ular languages in the following way: for the given reg-
ular language, we have to construct the equivalent finite
automaton having the minimum possible star-height. After
that, considering n! bijective functions (“order functions”;
the value n is the number of states of this automaton),
we construct corresponding regular expressions and choose
the expression having the minimum possible star-height.
Thus, a possible solution of the star-height problem for
regular language is constructing such “minimum” automaton.
To build such an automaton, we perform some equivalent
transformations; they are described in the papers cited before
and in this paper. These description of such transformations
is the main subject of this paper.

It follows from the title of this paper (more precisely, its
Part I), that we shall describe an algorithm which combines
some states of a given nondeterministic finite automaton.
However, unlike [1], [2]:
• we have more stringent requirements for the states of

the considered automaton;
• on the other hand, we obtain (after combining two

states) the automaton, which is:
– not only equivalent to the given one,
– but also has the value of star-height which is no

more than such value for the given automaton.
In the remaining parts of the paper, we shall consider the
similar features of transformations, but for other algorithms.

This paper has the following structure. In Section II, we
describe in detail the notation used in this paper; this notation
is almost the same as one used, for example, in [1], [4],
[5], [8]. In Section III, we add some designations related
with ordering functions used for the states of considered au-
tomaton. In Section IV, we add the notation connected with
adding / deleting states / edges for the considered automaton.

In Section V, we describe an algorithm which combines
two states of the considered automaton. After its using, we
obtain new automaton which is equivalent to the given one
and also has the value of star-height which is no more than
such value for the given automaton. And in Section VI we
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consider an example for the combining algorithm described
before.

In the following parts of this paper, we are going to
describe the algorithms for deleting and adding a state.

II. PRELIMINARIES

In this section, we shall describe in detail the notation used
in this paper. This notation is almost the same as one used
in [1], [4], [5], [8] etc.

Like most of the cited papers, the “main” automaton under
consideration will be denoted by

K = (Q,Σ, δ, S, F ). (1)

We shall consider transition function δ of automaton (1) as

δ : Q× Σ→ P(Q) ,

but not as
δ : Q× (Σ ∪ {ε})→ P(Q) ,

The language of this automaton is L = L(K).
We shall write some edge δ(q, a) 3 r in the form q

a−→
δ
r,

or, if it does not cause discrepancies, simply in the form
q

a−→ r. Sometimes, we shall consider the transition function
δ as the set of such edges.

The mirror automaton for the automaton given in (1), i.e.

(Q,Σ, δR, F, S),

where
q′

a−→
δR

q′′ if and only if q′′
a−→
δ
q′,

will be denoted by KR; note that KR defines the language
LR.

For the considered regular language L, its automaton of
canonical form will be denoted by L̃. Let automata L̃ and
L̃R for the given language L be as follows:

L̃ = (Qπ,Σ, δπ, {sπ}, Fπ)

and
L̃R = (Qρ,Σ, δρ, {sρ}, Fρ).

We do not consider the language L = ∅, then both these
automata have initial states.

Let us recall definitions of binary relation # and state-
marking functions ϕin and ϕout. Relation

# ⊆ Qπ ×Qρ

is defined for pairs of states of automata L̃ and L̃R in the
following way: A#X if and only if(

∃uv ∈ L
) (
u ∈ Lin

L̃
(A) , vR ∈ Lin

L̃R
(X)

)
.

State-marking function

ϕinK : Q→ P(Qπ)

is defined in the following way:

ϕinK (q) 3 q̃ if and only if LinK (q) ∩ Lin
L̃

(q̃) 6= ∅ .

And state-marking function

ϕoutK : Q→ P(Qρ)

is defined similarly for automata KR (the mirror automaton
for K) and L̃R.

The definition for basis automaton for the given regular
language L could be found in [3] etc. In this paper, it will
be denoted by

BA(L) =
(
Q̂,Σ, δ̂, Ŝ, F̂

)
.

Binary relation # defined in the above manner forms also
the set of so-called pseudo-grids: namely, each of them is
a pair (P,R) (where P ⊆ Qπ and R ⊆ Qρ), such that
for each pair of states p ∈ P and r ∈ R condition p#r
holds. Each of such pseudo-grids corresponds to the state of
any particular automaton for the given language. Moreover,
the necessary condition for defining the given language
by a finite automaton is that the subset of pseudo-grids
corresponding to the set of states of considered automaton
cover all the items of the relation #.

And if for some pseudo-grid (P,R) we can not extend
neither set P nor the set R in order to not violate the
definition of a pseudo-grid, then we call such a pseudo-grid
by a grid. In fact, we use pseudo-grids in this paper.

Thus, we can assume that by considering some given
regular language L, we simultaneously introduce the notation
for the related language:

• two canonical automata (i.e., L̃ and L̃R), and also their
states, their transition functions etc.;

• binary relation # defined on pairs of states of automata
L̃ and L̃R;

• state-marking functions ϕin and ϕout;
• equivalent basis automaton BA(L);
• equivalent automaton COM(L). 1

If the transition graph of automaton (1) includes a path
from q′ ∈ Q to q′′ ∈ Q, we shall write V(q′, q′′). If

V(q′, q′′) and V(q′′, q′),

then we shall write W(q′, q′′). We shall complete these
definitions in the next section.

For the further, also the papers [5], [6] are important. We
considered there some questions of the possible classification
of the states and loops of a nondeterministic finite automaton.
For this, we consider the basis finite automaton for the given
regular language ([1] etc.) and the paths and loops of its
transition graph. We also consider the paths and loops of the
transition graph of another nondeterministic automaton that
defines the same language; that is (1) in our notation. On the
basis of this, we define corresponding paths and loops of two
mentioned automata and the questions of their classification.

We also described the following objects there. For each
state of the basis automaton, we consider the states of (1)
corresponding to this state of the basis automaton, and give
their classification as a function of the loops passing through
the same state of the basis automaton. Their subset is the
set of so-called including loops, on the basis of which we
determine so-called partially complete loops. For any chosen
vertex of the basic automaton, we call the vertices of the
considered nondeterministic automaton, through which all
possible partially complete loops pass, by complete cyclic
states. (See in [5], [6] the more detailed classification of
states and loops.)

1 Directly, automaton COM(L) is not used in this paper. However, the
“minimum” automaton considered in this paper can be defined as the sub-
automaton of COM(L).
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In the end of the section, we shall describe the procedure
of combining two states (see this notation in [1, Sect. 2]). Ac-
cording to the name of the part of the paper, this designation
is one of the main.

Definition 1: For the automaton (1) and some its states
q1, q2 ∈ Q, let us denote by J q1q2(K) automaton, which
transition graph is obtained from the transition graph of
automaton K in the following way 2:
• for each vertex r ∈ Q, we change the sets of edges of

the type γ(q1, r) for the sets γ(q1, r) ∪ γ(q2, r);
• for each vertex r ∈ Q we change the sets of edges of

the type γ(r, q1) for the sets γ(r, q1) ∪ γ(r, q2); 3

• q2 is deleted, together with all the corresponding ele-
ments of the function γ.

In the obtained automaton, the vertex q1 is an initial (a final)
vertex if and only if at last one of two vertices q1, q2 was
an initial (a final) one for automaton K. �

III. NOTATIONS ASSOCIATED
WITH THE ORDER FUNCTION

In this section, we add some designations related with or-
dering functions used for the states of considered automaton.
For the further, like [4], we shall use the order function τ
for the given automaton (1) of the type

τ : Q→ R+
.

Using such functions, we defined in [4] the star-height of the
finite automaton. We shall not repeat it in this paper (it is
long), although we shall use it below.

We shall suppose below, that the set Q is the following:

Q = { q1, q2, . . . , qn } ,

where
τ(q1) < τ(q2) < . . . < τ(qn).

We shall also write, e.g., p < r meaning τ(p) < τ(r), use
“max” meaning

max(p, r) =

{
p, if τ(p) ≥ τ(r)

r, if τ(p) < τ(r) ,

etc. Let us fix K and τ . Using these agreements and some
value m ∈ {1, . . . , n}, let us define the following sets, which
complete the definitions of the previous section.

Definition 2: For some states q, p, r ∈ Q, where p ≥ q
and r ≥ q, let us consider some simple path from p to r, 4

whose sequence of vertices is

(p, q1, q2, . . . , qs, r)

such that

s ≥ 0 and (∀i ∈ {1, . . . , s}) (qi > q).

We shall denote the set of all such paths by ∆q(p, r).

2 We consider this definition for the transition graph (having vertices
marked by inputs and outputs), but not for elements of the 5-tuple (1).
However, this definition is strict. If necessary, it can be reformulated for the
objects of (1).

3 Thus, for each of 4 opportunities q′, q′′ ∈ {q1, q2}, each edge
γ(q′, q′′) 3 a becomes the loop γ(q1, q1) 3 a.

4 We allow p = r. In this case, i.e., if p = r, it is a simple loop.

We set

∆q = { q′ is a state of a path of ∆q(q, q) and q′ 6= q } .

If ∆q(p, r) 6= ∅, then we shall write Vq(p, r) (otherwise
Vq(p, r)).

If Vq(p, r) and Vq(r, p), then we shall write Wq(p, r). �

Definition 3: Let us define the following sets

Qm = { q1, q2, . . . , qm−1 }

and
Tm = { qm+1, qm+2, . . . , qn } ,

and also their subsets

Q̂m = { q ∈ Qm | Ψ(q) = Ψ(qm) }

and
T̂m = { q ∈ Tm | Ψ(q) = Ψ(qm) } .

Let us define also the following sets of pairs:

Ψ̂m =
⋃

q∈Q̂m

Ψ̂(qi).

A state is called important state, if the following condition
holds: (

∃(A,X) ∈ Ψ̂(qm)
) (

(A,X) /∈ Ψ̂m

)
. �

IV. ADDITIONAL NOTATION

We also shall use the following notation. It is connected
with adding / deleting states / edges for the considered au-
tomaton.

Definition 4: For a state q ∈ Q, let us define automaton
K−q , Obtained from automaton (1) by deleting the state q. 5

For the edge r a−→ t (this edge may be contained or may
not be contained in the given transition function δ), let us
define automaton

K
+(r

a−→ t)
,

obtained from automaton (1) by adding this edge. 6 �

Definition 5: Let automaton (1) be given, besides,
L(K) = L; then automaton

K ′ = (Q′,Σ, δ′, S′, F ′ )

will be called a quasi-subset of automaton K, if for some
function ω : Q′ → Q the following conditions hold:
• for each state q′ ∈ Q′:

– if q′ ∈ S′, then ω(q′) ∈ S;
– if q′ ∈ F ′, then ω(q′) ∈ F ; 7

• for each pair of states q′, r′ ∈ Q′ and letter a ∈ Σ:
– if q′ a−→

δ′
r′, then ω(q′)

a−→
δ
ω(r′). �

Let us remark, that if an automaton is a subset of another
one (i.e., it can be obtained by removing some states and
edges), then it can be considered as its quasi-subset.

Proposition 1: Let automaton K ′ be a quasi-subset of
automaton K. Then L(K ′) ⊆ L(K). �

5 We shall not formulate the strict definition of automata K−q (for various
states q), i.e. we shall not define their initial and final states and the transition
functions: these definitions are obvious.

6 This designation will be used in the next parts of this paper.
7 It means that the state q′ can be an initial (a final) state, if the same

property has the state ω(q′). Similarly for the next item.
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V. THE COMBINING ALGORITHM

In this section, we shall describe an algorithm which
combines two states of the considered automaton. After its
using, we obtain new automaton which is equivalent to the
given one and also has the value of star-height which is no
more than such value for the given automaton.

Thus, for the states of the given automaton (1) we shall
use notation of Section III. Let also the order function τ and
the number m be given.

Theorem 1: Let q ∈ Tm. Let also

Wqm(qm, q) (2)

or
Vqm(qm, q) & Vqm(q, qm). (3)

Consider automaton

K ′ = J qmq(K).

Then

L(K ′) = L(K) and SH(K ′, τ) ≤ SH(K, τ).

Proof. The first equality is a consequence of the theorem
[1, Th. 1].

Let us prove the second fact. First, we note the following.
According to the definitions given in [1], using notation
J qmq , we mean that the state q is deleted (and the state qm
is kept). Besides, because the inequality τ(qm) < τ(q) holds
(according to the agreements entered before, i.e. q ∈ Tm),
then after such deleting, we shall consider that state of two
ones (q and qm), for which the value τ is less.

For the first subcase (i.e. (2)), condition q ∈ ∆qm holds,
then ∆q ⊆ ∆qm . Therefore by [4, Sect. III], we do not
increase the star-height of the considered automaton when
combining J qmq .

For the second subcase (i.e. (3)), condition ∆q∩∆qm = ∅
holds. Then, also combining the states q and qm, we obtain
for the resulting automaton K ′ = J qmq: for each pair
consisting of states q1 ∈ ∆q and q2 ∈ ∆qm , the following
condition holds 8:

Wqm(qm, q)

(otherwise, for the given automaton K one of the conditions
would be met: Vqm(q1, q2) or Vqm(q2, q1)); therefore, we also
do not increase the value of star-height of the considered
automaton. �

Thus, having considered this case, as a result of the
described transformations, we reduce the number of its states
and do not increase its star-height. (In other words, the
“combining” algorithm does not “complicate” the considered
automaton.)

VI. AN EXAMPLE OF THE COMBINING ALGORITHM

In this section, we shall consider an example for the
combining algorithm described before. All the examples that
we consider in this part of the paper and are supposed to be
considered in the following parts are made on the basis of the
basis automaton for the language of the regular expression

(a+ ab+ ba)∗.

8 Automaton K′ does not contain the state q; but in spite of this, we can
consider the set of states ∆q selected before.

More precisely, we shall consider a modified basis automa-
ton, for which we “doubled” 3 states; we already considered
it in [5, Fig. 9].

Figure 1. The given automaton (for the language (a+ ab+ ba)∗)

Certainly, dealing with the basis automata (and even au-
tomata obtained from them by “doubling” states) we cannot
consider the complex examples: for instance, all the sets Ψ
and Ψ̂ for such examples will consist of 1 element only.
However, as can be understood from the consideration of
the example below, more complex examples are unlikely to
be considered in the length of the article.

The next figure shows a possible function τ :

Figure 2. The previous automaton and an order function for it
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i.e.,

τ
(
B
Y 1
)

= 1, τ
(
A
Y 1
)

= 2, . . . , τ
(
B
X 1
)

= 9.

Owing to previous notation,
B
Y 1 = q1,

A
Y 1 = q2, . . . ,

B
X 1 = q9.

For this automaton and this function, we obtain the
following values of star-height. This value is counted for
the automaton including the specified states only and order
function τ given before. Let us especially remark, that this
is SH(K, τ) (for different automata K), but not SH(K).

Tab. 1

states of automaton SH(K, τ)
{q9} 0
{q8, q9} 0
{q7, q8, q9} 0
{q6, q7, q8, q9} 1
{q5, q6, . . . , q9} 2
{q4, q5, . . . , q9} 2
{q3, q4, . . . , q9} 3
{q2, q3, . . . , q9} 4
{q1, q2, . . . , q9} 5

(we defined SH(∅∗) = 0, see [4] etc.).
Remark once again, that we consider not the star-height

of the considered automata, and certainly not star-height of
its languages 9, but values SH(K, τ).

Then let m = 1, then q1 = B
Y 1 and q = q5 = B

Y 2 (i.e.,
we shall combine these states). After combining, we obtain
the following automaton:

Figure 3. The previous automaton after combining q1 = B
Y

1 and q5 = B
Y

2

For the last automaton, let us obtain the similar table for
the values SH(K, τ) (we can use the same function τ , despite
the automaton does not contain the state q5):

9 As we know, the star-height of the language (a+ab+ ba)∗ is equal to
1. We also can prove, that the star-height of each language of 9 automata
considered before is no more than 1.

Tab. 2

states of automaton SH(K, τ)
{q9} 0
{q8, q9} 0
{q7, q8, q9} 0
{q6, q7, q8, q9} 1
{q4, q6, q7, q8, q9} 1
{q3, q4, q6, q7, q8, q9} 2
{q2, q3, q4, q6, q7, q8, q9} 3
{q1, q2, q3, q4, q6, q7, q8, q9} 4

Certainly, the value SH(K, τ) does not increase compared
to the same value for Tab. 1.

ON THE FOLLOWING PARTS OF THIS PAPER

As we said in Introduction, we are going to describe the
algorithms for deleting and adding a state in the following
parts of this paper. It is important to note the following:
from our point of view, even the “adding” algorithm does
not “complicate” the considered automaton; the details will
be described later.
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