
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 12, 2015

 1

Abstract—In this paper, a SAT-based cryptanalysis of the

Bivium stream cipher is considered. For encoding the initial

cryptanalysis problem into SAT a special program Transalg

was used. For an obtained SAT instance we use Monte Carlo

method to search for a partitioning with good time estimation.

Several weakened cryptanalysis instances of the Bivium

generator were successfully solved in the volunteer computing

project SAT@home using corresponding partitionings found

on a computing cluster.

Keywords—Boolean satisfiability problem, Transalg,

cryptanalysis, Bivium, volunteer computing, SAT@home.

I. INTRODUCTION

Volunteer computing [1] is a type of distributed

computing which uses computational resources of PCs of

individuals called volunteers. Each volunteer computing

project is designed to solve one or several hard problems.

When PC is connected to the project, all the calculations are

performed automatically and do not provide any

inconvenience to a user since only idle resources of PC are

used. Nowadays the most popular platform for organizing

volunteer computing projects is BOINC [2] which is being

developed in Berkeley since 2002. Today there are about 70

active volunteer projects, the majority of them are based on

BOINC. A volunteer computing project consists of the

following basic parts: server daemons, database, web site

and client application. The daemons include work generator

(generates tasks to be processed), validator (checks the

correctness of the results received from volunteer’s PCs)

and assimilator (processes correct results). Client application

should have versions for the widespread computing

platforms. One of the attractive features of volunteer

computing is its low cost – to maintain a project one needs

only a dedicated server working 24/7. Main difficulties here

Manuscript received October 13, 2015. This work was supported in part

by the Russian Foundation for Basic Research (grants 14-07-31172-mol-a,

14-07-00403-a and 15-07-07891-a) and by the Council on grants of the

President of Russian Federation (grants SP-3667.2013.5, SP-1184.2015.5

and NSH-5007.2014.9).

Oleg Zaikin is a researcher at Matrosov Institute for System Dynamics

and Control Theory of Siberian Branch of Russian Academy of Sciences,

e-mail: zaikin.icc@gmail.com.

Alexander Semenov is the chief of the laboratory of discrete analysis

and applied logic at Matrosov Institute for System Dynamics and Control

Theory of Siberian Branch of Russian Academy of Sciences,

e-mail: biclop.rambler@yandex.ru.

Ilya Otpuschennikov is a researcher at Matrosov Institute for System

Dynamics and Control Theory of Siberian Branch of Russian Academy of

Sciences, e-mail: otilya@yandex.ru.

are software development and database administration. In

addition, it is crucial to provide the feedback to volunteers

using the web site of the project and special forums. Another

attractive feature of this type of computing is that volunteer

project can solve some particular hard problem for months

or even years with good average performance.

Wide class of problems from modern computer science

can be effectively reduced to Boolean satisfiability problem

(SAT) [3]. SAT problems are usually considered as the

problems of search for solutions of Boolean equations in the

form of CNF=1, where CNF is a conjunctive normal form.

There are many works in which various combinatorial

problems are reduced to SAT and solved in this form. For

example, such problems can be found in areas of

verification, cryptography, combinatorics and

bioinformatics. Usually if the cryptanalysis is considered as

a SAT problem then it is called a SAT-based cryptanalysis.

In this case to find a secret key it is sufficient to find a

solution of corresponding satisfiable SAT instance. For

solving corresponding SAT instance one usually needs large

computational resources. A volunteer computing project can

provide such resources. Below we present a brief outline of

our paper. In the second section, we describe how we utilize

the TRANSALG tool for reduction of the cryptanalysis

problem of the Bivium cipher to SAT. In the third section

experimental results on solving weakened cryptanalysis

problems for the Bivium generator in the volunteer

computing project SAT@home are presented.

II. PROPOSITIONAL ENCODING OF THE CRYPTANALYSIS

PROBLEM FOR BIVIUM

The Bivium cipher [4] uses two shift registers of a special

kind (see Fig. 1). The first register contains 93 cells and the

second contains 84 cells. To initialize the cipher, a secret

key of length 80 bit is put to the first register, and a fixed

(known) initialization vector of length 80 bit is put to the

second register. All remaining cells are filled with zeros. An

initialization phase consists of 708 rounds during which

keystream output is not released.

Fig. 1. Scheme of the Bivium cipher

In accordance with [5]–[7] we considered cryptanalysis

problem for Bivium in the following formulation. Based on

Solving weakened cryptanalysis problems for

the Bivium cipher in the volunteer computing

project SAT@home

Oleg Zaikin, Alexander Semenov and Ilya Otpuschennikov

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 12, 2015

 2

the known fragment of keystream we search for the values

of all registers cells at the end of the initialization phase.

Therefore, in our experiments we used CNF encodings

where initialization phase was omitted. Usually it is believed

that to uniquely identify the secret key it is sufficient to

consider keystream fragment of length comparable to the

total length of shift registers. Here we followed [6], [7] and

set the keystream fragment length to 200 bits.

To encode the algorithm of the Bivium cipher into CNF

we used TRANSALG tool [8]. As an input TRANSALG takes a

source code of a program in the domain specific language

named TA language. TA language is a procedural

programming language with C-like syntax. This source code

must describe an algorithm of computing of a discrete

function. Output of TRANSALG is a CNF which encodes the

considered algorithm.

Translation of a TA-program consists of two main stages.

On the first stage a source code of a TA-program is parsed,

and concrete syntax tree is constructed. On the second stage

of translation, the symbolic execution of TA-program is

performed. According to the concept of the symbolic

execution, interpreter does not operate on concrete data, but

with symbols which encode this data — Boolean variables

and Boolean vectors (arrays). The symbolic execution of a

TA-program results in a set of Boolean formulas, which is

called propositional encoding of the algorithm. We will

consider constructing of propositional encoding by

TRANSALG on the example of TA-program which describes

algorithm of the Bivium cipher.

 The TA-program for the Bivium cipher starts from the

declaration of integer constants (see Listing 1). Here

constant len is equal to total length of the shift registers

(177 bits); constants lenA and lenB define the lengths of

each register (93 and 84 bits respectively); stream_len

defines the number of bits of a keystream produced by the

cipher (200 bits). After this, arrays of variables of type bit

are declared. Main data type in the TA-language is the bit

type. TRANSALG uses this type to establish links between

variables used in a TA-program and Boolean variables

included into corresponding propositional encoding. Below

we will refer to variables that appear in a TA-program as

program variables. All variables included in a propositional

encoding are called encoding variables.

Global variables of type bit can be declared with

attribute __in or __out. Attribute __in marks program

variables associated with Boolean variables that encode

input of an algorithm. In fact, in such a way we declare a set

of variables with the following feature: any assignment of

these variables derives values of all other variables in the

propositional encoding. It should be noted that in every TA-

program that describes some algorithm there must be

declared variables which encode input of the considered

algorithm. Attribute __out marks variables which, after

TA-program is executed, contain an output of the algorithm.

In the Listing 1 the bit array reg with attribute __in is

declared. This array contains a state of the shift registers of

the generator. Attribute __in reports to the translator that

initial state of the registers is unknown. Encoding variables,

linked with program variables marked with attribute __in,

get first len numbers in a propositional encoding.

Also in the Listing 1 the bit array stream with attribute

__out is declared. This array contains the keystream

produced by the cipher. Encoding variables, linked with

program variables marked with attribute __out, get last

stream_len numbers in a propositional encoding. Thus

by using attributes __in and __out we uniquely identify

the sets of Boolean variables in a propositional encoding,

which encode input and output of an algorithm respectively.

define len 177;

define lenA 93;

define lenB 84;

define stream_len 200;

__in bit reg[len];

__out bit stream[stream_len];

Listing 1. Declarations of global variables and constants

In the considered TA-program shifting of the registers is

implemented in the form of the procedure shift_regs

(see Listing 2). This procedure updates the state of the

global bit array reg, according to the Bivium algorithm [4].

During interpretation of the procedure shift_regs, new

encoding variables are created only to represent the result of

feedback functions calculation. Operations of copying data

between cells add nothing to a propositional encoding —

only links between program variables and corresponding

Boolean encoding variables are changed.

void shift_regs()

{

 bit t1 = reg[65]^reg[90]®[91]

^reg[92]^reg[170];

 bit t2 = reg[161]^reg[174]®[175]

^reg[176]^reg[68];

 int i;

 for(i=lenA-1; i > 0; i=i-1){

 reg[i] = reg[i-1];

 }

 reg[0] = t2;

 for(i=lenA+lenB-1; I>lenA; i=i-1){

 reg[i] = reg[i-1];

 }

 reg[lenA] = t1;

}

Listing 2. Function that implements one shift of the Bivium

registers

Interpretation of a TA-program starts from executing the

function main. This function is the entry of any TA-

program. Presented in the Listing 3 function main

implements the base loop of the Bivium cipher.

void main()

{

 for(int i=0;i<stream_len; i=i+1){

 bit t1 = reg[65] ^ reg[92];

 bit t2 = reg[161] ^ reg[176];

 stream[i] = t1 ^ t2;

 shift_regs();

 }

}

Listing 3. Implementation of the base work loop of the

Bivium cipher

One iteration of the loop from the Listing 3 outputs one

bit of a keystream. For this purpose the current state of the

four registers cells are taken — their sum mod 2 gives next

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 12, 2015

 3

keystream bit. After this, the shifting of the registers is

performed by calling function shift_regs.

The considered TA-program describes the generation of

200 keystream bits by the Bivium cipher. The translation of

this program results in the system of 465 Boolean equations.

The transition from this system to the CNF is performed

using the Tseitin transformations [9] and procedures of

Boolean minimization. The final CNF which encodes

generating of 200 keystream bits by Bivium is constructed

over the set of 642 Boolean variables, and consists of 9560

clauses and 49920 literals.

III. USING SAT@HOME FOR SOLVING WEAKENED

CRYPTANALYSIS PROBLEMS FOR BIVIUM

SAT@home [10] is a volunteer computing BOINC-based

project aimed at solving hard combinatorial problems that

can be effectively reduced to SAT. It was launched on

September 29, 2011 by ISDCT SB RAS and IITP RAS. On

February 7, 2012 SAT@home was added to the official list

of BOINC projects with alpha status. Recently its status was

improved to beta.

The SAT@home server uses a number of standard

BOINC daemons responsible for sending and processing

tasks (transitioner, feeder, scheduler, etc.). The work

generator daemon decomposes the original SAT problem to

subproblems according to partitioning found by our Monte

Carlo method, implemented as a parallel application [11].

The validator checks the correctness of the results, and the

assimilator processes correct results. The client application

is based on the SAT solver MINISAT [12].

With respect to the estimation obtained by the Monte

Carlo method [11] on a computing cluster, the solving of

one instance of cryptanalysis of the Bivium cipher in the

SAT@home project with its current performance would take

about 2 years (using decomposition set of 50 variables [11]).

That is why we decided to solve weakened cryptanalysis

problems for this generator. Below we use the notation

BiviumK to denote a weakened cryptanalysis problem for

Bivium with known values of K variables (in corresponding

SAT instance) encoding last K cells of the second shift

register. In particular we considered the Bivium9 problem.

We used our Monte Carlo method to find a decomposition

set with good time estimation for Bivium9. As a result we

obtained the decomposition set of 43 variables with time

estimation 2 months for solving of one cryptanalysis

instance of Bivium9 in SAT@home. From September 2014

to December 2014 with the help of this decomposition set 5

Bivium9 instances were solved in SAT@home (1 month in

average). During the corresponding experiment for each

cryptanalysis instance the search space was divided into

146602 equal tasks, each containing 60 millions

subproblems. For processing one such task about 2 hours of

1 core of a modern CPU is needed. The client application

was based on a modified version of MINISAT 2.2. Time

estimation obtained by the Monte Carlo method shows

strong correlation with real solving time of these

cryptanalysis instances. During this experiment performance

of SAT@home was increased by several computing clusters

which were connected with the help of CluBORun tool [13].

IV. RELATED WORK

The authors of [6], [7] presented some estimations of the

time required for the SAT-based cryptanalysis of the Bivium

cipher. Apparently, [14] became the first paper about the use

of a desktop grid based on the BOINC platform for solving

SAT, but it did not evolve into a full-fledged volunteer

computing project. The predecessor of the SAT@home was

the BNB-Grid system [15], that was used to solve some hard

SAT-based cryptanalysis problems.

V. CONCLUSION

Obtained results show that SAT@home can be

successfully used for solving hard SAT-based cryptanalysis

problems. We plan to use SAT@home for solving non-

weakened cryptanalysis problem of the Bivium cipher. Also

we plan to solve in SAT@home cryptanalysis problems for

other stream ciphers.

ACKNOWLEDGMENT

We thank Mikhail Posypkin and Nickolay Khrapov for

their help in maintaining the SAT@home project, and all the

SAT@home volunteers for their participation.

REFERENCES

[1] M. N. Durrani and J. A. Shamsi, “Review: Volunteer computing:

Requirements, challenges, and solutions,” J. Netw. Comput. Appl.,

vol. 39, pp. 369–380, 2014.

[2] D. P. Anderson and G. Fedak, “The computational and storage

potential of volunteer computing,” in Proc. 6th IEEE International

Symposium on Cluster Computing and the Grid, Singapore, 2006, pp.

73–80.

[3] Handbook of Satisfiability, Frontiers in Artificial Intelligence and

Applications, vol. 185. IOS Press, 2009.

[4] C. D. Canniere, “Trivium: A stream cipher construction inspired by

block cipher design principles,” in Proc. 9th International Conference

ISC, Samos Island, Greece, 2006, pp. 171–186.

[5] A. Maximov and A. Biryukov, “Two trivial attacks on Trivium,” in

Proc. 14th International Workshop on Selected Areas in

Cryptography, Ottawa, Canada, 2007, pp. 36–55.

[6] T. Eibach, E. Pilz and G. Volkel, “Attacking Bivium Using SAT

Solvers,” in Proc. 11th International Conference on Theory and

Applications of Satisfiability Testing, Guangzhou, China, 2008, pp.

63–76.

[7] M. Soos, “Grain of Salt - an AutomatedWay to Test Stream Ciphers

through SAT Solvers,” in Proc. Workshop on Tools for Cryptanalysis,

London, UK, 2010, pp. 131–144.

[8] I. V. Otpuschennikov, A. A. Semenov and S. E. Kochemazov,

“Transalg: a tool for translating procedural descriptions of discrete

functions to SAT,” in Proc. 5th International Workshop on Computer

Science and Engineering: Information Processing and Control

Engineering, Moscow, Russia, 2015, pp. 289-294.

[9] G. S. Tseitin, “On the complexity of derivation in propositional

calculus,” Automation of Reasoning 2: Classical Papers on

Computational Logic 1967-1970, pp. 466–483, 1983.

[10] M. A. Posypkin, A. A. Semenov and O. S. Zaikin, “Using BOINC

desktop grid to solve large scale SAT problems,” Computer Science

Journal, vol. 13, no. 1, pp. 25–34, 2012.

[11] A. A. Semenov and O. S. Zaikin, “Using Monte Carlo method for

searching partitionings of hard variants of Boolean satisfiability

problem,” in Proc. 13th International Conference on Parallel

Computing Technologies, Petrozavodsk, Russia, 2015, pp. 222–230.

[12] N. Een and N. Sorensson, “An extensible SAT-solver,” in Proc. 6th

International Conference on Theory and Applications of Satisfiability

Testing, Santa Margherita Ligure, Italy, 2003, pp. 502–518.

[13] A. P. Afanasiev, I. V. Bychkov, M. O. Manzyuk, M. A. Posypkin, A.

A. Semenov and O. S. Zaikin, “Technology for Integrating Idle

Computing Cluster Resources into Volunteer Computing Projects,” in

Proc. of The 5th International Workshop on Computer Science and

Engineering, Moscow, Russia, 2015, pp. 109-114.

[14] M. Black and G. Bard, “SAT Over BOINC: An Application-

Independent Volunteer Grid Project,” in Proc. 12th IEEE/ACM

International Conference on Grid Computing, Lyon, France, 2011,

pp. 226–227.

[15] Y. G. Evtushenko, M. A. Posypkin and I. Kh. Sigal, “A framework

for parallel large-scale global optimization,” Computer Science -

Research and Development, vol. 23(3-4), pp. 211-215, 2009.

