International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

Minimal-Feature XSS Detection by SHAP and
Importance-Driven Pruning

Abdulkader Hajjouz, Elena Avksentieva

Abstract— Cross-Site Scripting (XSS) remains a high-impact
web threat despite widespread defensive mechanisms. Building
on our prior study, we ask: how few features are needed to
preserve near-ceiling detection quality? Starting after
correlation-based de-redundancy, we iteratively prune features
using CatBoost feature importance and SHAP values,
retraining at each step on the same stratified, SMOTENC-
balanced splits. The process yields an ultra-compact classifier
using four features only. On the fixed test set, the model attains
Accuracy = 0.984728, MCC = 0.9687, ROC-AUC =0.9932, AP
= 0.99, Precision (macro) = 0.986362, Recall (macro) =
0.982326, and F1 (macro) = 0.98421; the confusion counts are
TN = 7023, FP = 25, FN = 159, TP =4841. Training/validation
losses converge smoothly, and SHAP beeswarm plots show that
all four retained features contribute consistently across many
instances, explaining the strong threshold-free metrics. These
results demonstrate that accurate, interpretable, and
deployment-ready XSS detection is achievable with a minimal
feature budget.

Keywords— Cross Site Scripting, XSS, CatBoost, SHAP,
feature selection, lightweight models, interpretability.

I. INTRODUCTION

In the ever-changing landscape of cyber threats, Cross-
Site Scripting (XSS) continues to challenge web security at
scale [1]. By injecting malicious scripts into vulnerable
applications, attackers jeopardize data integrity and user
safety and can pivot rapidly across systems [2—3]. While
Web Application Firewalls (WAFs) mitigate a portion of
attacks, gaps persist when unsafe coding patterns reach
production or when payloads are deliberately obfuscated to
evade rule-based defenses [4]. Incident reports on major
platforms repeatedly highlight the operational impact of
XSS, and industry surveys continue to rank it among the
most reported and severe web vulnerabilities [5—8]. These
trends underscore the need for detection strategies that are
both precise and operationally efficient.

Machine learning has emerged as a strong candidate for
XSS detection, spanning deep-learning pipelines with
sequence embeddings and LSTMs, crawler-assisted testing,
and classical models such as SVMs, k-NN, Random Forests,
and Decision Trees [9-16]. Yet many systems remain
feature-rich and computationally heavy, which complicates
real-time deployment in resource-constrained environments

Manuscript received September 21, 2025.

Abdulkader Hajjouz is withthe National Research University ITMO,
Saint Petersburg, 191002 Russia (phone: +79693483331; e-mail:
hajjouz@itmo.ru).

Elena Avksentievais with the National Research University ITMO,
Saint Petersburg, 191002 Russia (e-mail: eavksenteva@itmo.ru).

such as in-line gateways, edge nodes, and large-scale multi-
tenant services. This paper addresses that bottleneck by
explicitly investigating the minimal signal required for
reliable XSS classification.

Our study builds on our previous work [17], which
established the dataset, preprocessing pipeline, stratified
sampling with SMOTENC balancing, and correlation-based
de-redundancy. Here we start after the correlated features
have been removed and pursue an iterative, model-driven
reduction guided by CatBoost feature importance and
SHAP. At each step we retrain and re-evaluate on fixed
splits, enabling paired comparisons across the entire
reduction path. The central question is whether a drastically
reduced feature set can retain high discrimination while
remaining interpretable.

The contributions of this paper are threefold. First, we
present a transparent reduction path that terminates in a
four-feature CatBoost classifier while preserving stability in
training and generalization on held-out data. Second, we
formalize an evaluation protocolthatemphasizesthreshold -
free assessment and consistency checks under fixed,
stratified splits, aligning with deployment realities. Third,
we provide interpretable explanations via SHAP that justify

the selected signals—Contains Less-Than, ScriptTag,
Contains Question-Mark, and Contains Comma—
highlighting how compact, semantically meaningful

indicators can support simpler, faster, and more portable
defenseswithout sacrificing clarity of decision rationale.

Il. METHOLOGY

A. Continuity with Prior Work

This study explicitly builds on our previous research [17].
We reuse the same dataset, preprocessing, stratified
sampling and SMOTENC balancing, and the hierarchical
Spearman-based feature de-redundancy already established
and validated in [17]. The present work starts after
correlated features have been removed and focuses on
deleting features based on model feature importance and
SHAP values, followed by grid-searched CatBoost training
and a transparent, weighted model-selection stage.

B. Model Development Process Flow

The development pipeline follows a systematic, iterative
flow aimed at balancing model complexity with
discriminative performance. A baseline CatBoost model is
first trained using the full feature set to establish an upper
bound for accuracy and a reference point for subsequent
reductions. Guided by the correlation analysis already

95

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

Input Dataset

| DATA ANALYSIS AND CLEANUP |

I STRATIFIED SAMPLING AND CLASS BALANCING |

1st repetition? L

> 2nd repetition?
Y
A 4

Utilize the entire feature set to
establish a baseline

Apply Spearman's correlation to
eliminate highly correlated features

Reduce the number of features depending on the values
(SHAP and importance Features) of the previous model

|—>| Grid Search and Train Catboost Model |—>

Choosing the best model with the

Calculate Overall Accuracy, MCC, ROC-AUC, AP,

Output model for selected features

highest accuracy on the evaluation set 1 Precision, Recall, F1-score
Calculate importances using the CatBoostClassifier

{/1

model and SHAP values for each classe

yes

>=4 features

Figure 1: Feature Importancesfor XSS Detection Model.

performed in [17], features exhibiting strong redundancy are
pruned, which yields a streamlined set upon which the
present paper operates. The core loop then proceeds in
iterations: ateach iteration, a CatBoost modelis trained and
tuned; its evaluation-set accuracy is recorded; SHAP values
and model-reported feature importance are computed; and
features deemed least influential are eliminated. This train—
assess—prune cycle continues while the model’s
performance is monitored as in [17], and while the evolving
importance profiles (Fig. 1) inform the next reduction step.
The loop terminates when the retained features are reduced
to a compact subset (down to four features), producing the
sequence of 14 candidate models referenced throughout this
work. Each candidate is subsequently considered in a final
selection stage whose objective is to preserve robust XSS
detection while minimizing feature count to enable efficient,
real-world operation.

C. Deleting Features Based on Feature Importance and
SHAP Values

Selecting the right features is crucial for distinguishing
between benign and malicious inputs while keeping the
model simple and efficient. We therefore combine model-
reported feature importance with SHAP values to guide an
iterative pruning process that preserves interpretability.

We proceed after the correlated features have been
removed. At each iteration, a CatBoost model is trained on
the current feature set; we then (i) compute feature
importance and SHAP values, (i) identify features with low
mean absolute SHAP and low importance rankings (i.e.,
minimal impact on predictions), (iij) remove those least-
influential features, and (iv) retrain the model on the
reduced set. After every removal step, we re-evaluate key
metrics—accuracy, precision, recall, and F1—to verify that
pruning does not degrade discriminative performance. This
train—assess—prune cycle continues until a compact subset is
obtained (down to four featuresin our case).

To quantify importance in tree ensembles, we use the

split-gain formulation:

JW=Z”MMJ

where AG(f) is the improvement in the objective
function (e.g., Gini impurity or entropy) due to splits on
featurefin tree t, and T is the total number of trees.

ISIN(IF . !
@:(f, %) Zumfumﬂw D rsuin

In this expression, @i is the SHAP value for feature i, Fis
the set of all features, x is the input instance, Sis a subset of
F excluding i, and f(S) is the model output using features in
S. Aggregating SHAP values across instances yields mean
absolute SHAP profiles and class-specific plots that clarify
how features influence benign and attack predictions, which
in turn guide the next pruning step.

In short, the dual use of model importance and SHAP
provides complementary, transparent signals: global
contributions from split gains and local contributions from
SHAP. Evaluating after each deletion ensures that the final,
minimal feature set maintains the desired balance between
interpretability and accuracy.

f($)1

Il. RESULTS

To evaluate the four-feature CatBoost classifier for Cross-
Site Scripting (XSS), we examine the test-set confusion
matrix (Fig. 2), which aligns predictions with ground truth
into true positives (TP), true negatives (TN), false positives
(FP; benign requests incorrectly flagged—Type | error), and
false negatives (FN; attacks incorrectly accepted—Type Il
error); on the fixed split the counts are TN =7023, FP = 25,
FN =159, TP = 4841 (7048 benign, 5000 malicious; total =
12 048), yielding 98.47% overall accuracy, TPR/Recall
(attacks) =96.82% (4841/5000), TNR/Specificity (benign) =
99.65% (7023/7048), FPR = 0.35% (25/7048), FNR =
3.18% (159/5000), Precision (attacks) = 99.49%
(4841/(4841+25)), and NPV =97.79% (7023/(7023+159));
together these figures indicate a very low alarm rate on
benign traffic while capturing the vast majority of attacks,
and they are consistent with the paper’s aggregate metrics

96

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

(e.g., MCC =0.9687, macro-Recall = Balanced Accuracy =
98.23%), underscoring that high discrimination is retained
despite the aggressive reduction to just four input features.

Figure 2: Confusion Matrix of the fourfeature
CatBoostClassifier on the test set.

Figure 3 traces the training and validation loss across
boosting iterations. Both curves drop sharply at the start,
showing that the model captures the signal quickly; a clear
“knee” appears after the early rounds (roughly the first few
dozen iterations), after which improvements taper and both
curves flatten toward low values. The generalization gap
between training and validation remains small and stable
throughout, with no late-stage rise in validation loss,
indicating stable learning without harmful overfitting under
the chosen CatBoost settings. The smooth, non-oscillatory
profiles also suggest well-tuned optimization and that an
early-stopping checkpoint near the validation minimum
would retain performance while limiting computation.
Overall, the dynamics confirm that reducing to four features
does not impede convergence or stability and aligns with the
strong aggregate metrics reported later.

Figure 3: CatBoost Training and Validation Loss Over
Iterations.

To evaluate threshold behavior, we examine the Receiver
Operating Characteristic (ROC), which traces the True
Positive Rate (TPR/sensitivity) against the False Positive
Rate (FPR = 1 — specificity) as the decision threshold varies.
The macro-averaged ROC in Fig. 4 hugs the upper-left
corner and sits far above the no-skill diagonal, yielding

AUC = 0.9932. This implies that, over random pairs of
attack vs. benign requests, the classifier ranks the attack
higher ~99.3% of the time. The steep early rise at very low
FPR indicates the model can operate in conservative
regimes—with minimal false alarms—while retaining high
sensitivity, consistent with the low FPR observed in the
confusion-matrix analysis. Overall, the ROC confirms
strong ranking quality independent of any single operating
threshold.

Figure 4: Overall ROC Curve for the four feature
CatBoostClassifier

Precision—Recall (PR) curves characterize performance
under class imbalance by showing how precision varies with
recall as the decision threshold moves; unlike ROC, PR
focuses on the quality of positive predictions, which is
critical in XSS detection where both missed attacks and
spurious alerts are costly. In Fig. 5, both class-wise curves
cling to the upper-right region and remain essentially flat at
high precision across a broad recall range, with a sharp
precision drop only at extreme recall values. The area under
each curve is high—AP = 0.9910 for Class 0 (benign) and
AP = 0.9889 for Class 1 (attack)—yielding a macro-AP =
0.9900. This shape indicates that the model supports
conservative operating points (very low false alarms) as well
as high-recall regimes with minimal precision penalty,
consistent with the confusion-matrix summary
(Precision_attack =~ 99.49%, Recall attack = 96.82%).
Overall, the PR analysis confirms strong ranking quality for
both classes and reinforces the detector’s suitability for
deployment where precision athigh recall is required.

97

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

Figure 5: Precision—Recall Curves for the four feature
CatBoostClassifier.
To understand which inputs drive decisions in such a

compact model, we examine the global importances and
local explanation signals along the reduction path. Figure 6
charts CatBoost’s split-based feature importances per
candidate model (2—14). As features are removed,
importance mass is reallocated among the survivors; weak
indicators quickly sink toward the baseline and are dropped,
while a small core steadily rises into the top tier. Notably,
the four signals that remain in the final detector—Contains
Less-Than, ScriptTag, Contains Question Mark, and
Contains Comma—progressively dominate the ranking as
the set shrinks, which is exactly what we expect if they carry
most of the discriminative signal. Because importances are
relative within each model, the most reliable way to read
this plot is by rank order and its stability across models
ratherthan by comparing raw magnitudes.

Figure 7 complements this with mean absolute SHAP
values for Class 0 (benign) across iterations. Whereas Fig. 6
summarizes global split usage, SHAP aggregates instance-
wise contributions. The same core features persist with high

¥ 3 3 i —1
; i . T .
}-:-:::' & e A :-—; x
SREEEFUTFey s
Figure 6: Featureimportancesacross models (2-14).
Mean SHAP Values for Class 0 Across Merations 31
T— L Y A e e
< -
é £ 2 o ’
> L
B 0 e ’ . = 2
e TNy -— - Sy - ~ \ - < 2
I:: perene P > - -~ \N-’ ---- > p

Neration Number

Figure 7: Mean SHAP valuesfor Class 0 across iterations (2—14).

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

mean SHAP across the path, indicating consistent local
influence over many examples rather than a few outliers.
Features that are eventually pruned show diminishing SHAP
profiles prior to removal, and once eliminated their traces
drop outin subsequent iterations—evidence that the pruning
loop is guided by genuine contribution rather than noise.
Together, the two views (global importance and local
SHAP) converge on the same compact feature set,
explaining why the model retains high discrimination even
with a minimal budget.

signals. In practice, operators can tune thresholds for
conservative modes while monitoring drift by tracking per-
feature mean |SHAP| over time. Together, strong,
semantically grounded markers plus low-variance
modulators explain how the compact model stays both
discriminative and interpretable. Edge cases where
punctuation dominates without structural cues are rare and
tend to cluster near the decision boundary, making them
natural candidates for manual review or margin-based
alerting.

Figure 8 provides class-wise TreeSHAP explanations for
the final four-feature model, clarifying how each signal
shapes decisions. SHAP values are in log-odds: points to the
right of zero support the plotted class, points to the left
oppose it; color reflects the raw feature value (warm = high,
cool = low). In the benign panel (top), high Contains Less-
Than and ScriptTag values yield consistently negative
contributions clustered left of zero, matching their role as
attack markers. Contains Question Mark and Contains
Comma show smaller, bidirectional effects near zero,
reflecting punctuation that appears in both benign queries
and obfuscated payloads.

The attack panel (bottom) mirrors this pattern: Less-Than
and ScriptTag shift decisively right, contributing strongly
across many instances, while punctuation features add
positive evidence mainly when co-occurring with the
structural markers—suggesting learned interactions rather
thanisolated cues. Two properties aid deployment: high sign
consistency for the structural features, which makes
explanations stable and auditable, and a noticeable mass
near zero for punctuation, which helps maintain low FPR
while preserving recall. The ordering by mean |SHAP| also
aligns with the global importance trend (Fig. 8), indicating
that both global and local views single out the same core

Figure 8: SHAP Value Plots forthe four feature model —
top: Class 0 (benign), bottom: Class 1 (attack).

For reference, Table 1 enumeratesthe featuresretained at
each step of the reduction sequence; the final Model 14 uses
indices 41, 2, 25, and 39, which correspond respectively to

Table 1: Feature indices retained by each XSS detection modelalong the reduction path.

Model Feature Index

1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62, 63, 64, 65

2 41,25, 2,39,29,8,40,62,27,64,6,7,10,63,1,31,24,36,9,54,11,18,44,46, 49, 35, 45,12, 3,13,23,16,4, 14, 34,43, 30, 60, 47, 59,

21,55,52,15,20,5

41,25,39,2,29,62,40,8,7,27,64,6,10, 1,63, 31, 36,24,9,46,54,49,18,11, 3,44,45,13,35,23,16,12,4, 14, 43, 34, 30, 60, 15, 47

41,25,39,2,29,40,62,7,27,8,64,6,31,10,1,63,9,36,46,54,18,49,11,24, 45,44,13,23,12,4

41,25,39,2,29,40,27,8,7,62,64,6,31, 10, 36,63,9, 54,49, 11

25,41, 39,29,2,40,27,64,8,6,63,31

41,25,39,29,2, 40, 8,64, 27,6,63

3
4
5
6 41,25, 39,2, 29,40,64,8,7,6,62,10, 27,31, 63, 36,54
7
8
9

41,25,39,27,2,40,6, 8,64,63

10 41,25,39,2,27,64,6,63.
11 41,25,39,27,2,64,6

12 41,25,39,2,27,64

13 41,25,39,27,2

14 41,2,25,39

Index and feature

1 Contains &It, 2 ScripTag, 3 Readable, 4 Contains "><,5 Contains ><, 6 Contains And, 7 Contains Percentage, 8 Contains Slas h, 9 Contains BackSlash,
10 ContainsPlus, 11 Contains Document, 12 Contains Window, 13 Contains Onload, 14 Contains Onerror, 15 Contains DIV, 16 Contains iframe, 17
Contains img, 18 Contains SRC, 19 Containss VVar, 20 Contains Eval, 21 Contains href, 22 Contains Cookie,23 Contains StringfromCharCode, 24
Contains Single Quote, 25 Contains Question Mark, 26 Contains Exclamation Mark, 27 Contains Semicolon, 28 ContainsHT TP, 29 Contains JS, 30
Contains Hash, 31 Contains Equal, 32 Contains Open Bracket, 33 Contains Close Bracket, 34 Contains Duble Bracket, 35 Contains Dollar, 36 Contains
Open Parenthesis, 37 Contains Close Parenthesis, 38 Contains Asterisk, 39 Contains Comma, 40 Contains Hyphen, 41 Contains Less Than,42 Contains
Greater Than, 43 Contains At, 44 Contains Underscore, 45 Contains location, 46 Contains Search, 47 Contains &#, 48 Contains Colon, 49 Contains Dots,
50 Contains Open Brace, 51 Contains Close Brace,52 Containstilde, 53 Contains Spase, 54 Contains Qutions, 55 Contains Grave,56 Contains Duble
Equals, 57 Contains Duble Slash, 58 Contains Vertical Bar, 59 Contains Power, 60 Contains Broken Bar, 61 Contains Alert,62 Contains Break Line, 63
L etters Ratio, 64 Numbuers Ratio, 65 Symbols Ratio

99

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

Contains Less-Than, ScriptTag, Contains Question-Mark,
and Contains Comma. Table 2 reports the full set of test-set
metrics for all models. The four-feature classifier attains
Accuracy = 0.984728, MCC =0.9687, ROC-AUC =0.9932,
AP =0.9910, Precision = 0.986362, Recall =0.982326, and
F1 =0.98421, confirming that near-ceiling discrimination is
preserved despite aggressive pruning.

Table 2 contais comparative test-set performance across
models. Accuracy, Precision, Recall, and F1 are macro-
averaged. The AP column reports macro-AP; for the four-
feature model the per-class APs are 0.9910 and 0.9889,

evidence that the predictive signal concentrates in a
compact, interpretable subset.

The practical implications are direct: a smaller feature
footprint simplifies data collection and preprocessing,
reduces memory and latency, and facilitates deployment in
resource constrained or real time settings without sacrificing
robustness. While the present study focuses on the
established dataset and fixed splits from [17], future work
can broaden external validity by testing on heterogeneous
web applications, evolving payloads, and adversarially
crafted inputs, and by exploring probability calibration and

Table 2: Comparative test-set performance across models. Accuracy, Precision, Recall, and F1 are macro-averaged.

Model Number Of Accuracy MCC ROC AUC AP Precision Recall F1-score
Features
1 65 0.999751 0.9995 1 1 0.999758 0.999729 0.99974
2 46 0.998755 0.9974 1 1 0.998733 0.998703 0.99872
3 40 0.998589 0.9971 1 1 0.998533 0.998561 0.99855
4 30 0.998672 0.9973 1 1 0.998633 0.998633 0.99863
5 20 0.998506 0.9969 1 1 0.998520 0.998403 0.99846
6 17 0.999087 0.9981 1 1 0.999104 0.999016 0.99906
7 12 0.997510 0.9949 1 1 0.997670 0.997204 0.99744
8 11 0.997759 0.9954 0.9999 0.9999 0.997942 0.997445 0.99769
9 10 0.997427 0.9947 0.9999 0.9999 0.997166 0.997540 0.99735
10 8 0.996680 0.9932 0.9984 0.9988 0.996814 0.996348 0.99658
11 7 0.996431 0.9927 0.9984 0.9987 0.996572 0.996078 0.99632
12 6 0.994273 0.9882 0.9975 0.9975 0.994467 0.993739 0.99410
13 5 0.991783 0.9832 0.9952 0.9949 0.993006 0.990158 0.99151
14 4 0.984728 0.9687 0.9932 0.9910 0.986362 0.982326 0.98421

yielding a macro-AP of approximately 0.9900.

The retained signals align with practical web-
programming semantics. ScriptTag marks explicit \<script
occurrences, whereas Less-Than flags entry into any
HTML-tag context; not only scripts (e.g., , <svg onload=...>,).
Question-Mark commonly appears in query-string payloads
and obfuscation patterns, and Comma frequently arises in
JavaScript argument lists and String.fromCharCode(...)
constructs. SHAP analyses (Fig. 8) show that punctuation
features contribute only minor, bidirectional evidence near
zero and become discriminative chiefly when co-occurring
with the structural markers, which explains the low FPR
alongside solid recall. Together, these patterns indicate the
model is not restricted to <script>-based injections but
capturesbroadertag- and event-handler-based vectors.

IV. CONCLUSION

This paper demonstrated that ultra lightweight XSS
detection is feasible without a material loss in discriminative
power. Starting from the pipeline established in [17] and
operating after correlation-based pruning, we iteratively
removed features using CatBoost importance and SHAP
guidance until reaching a four feature model. On the fixed
test split, the classifier achieved Accuracy = 0.984728, MCC
= 0.9687, ROC AUC = 0.9932, AP =0.9910, Precision =
0.986362, Recall = 0.982326, and F1 = 0.98421, with
confusion counts TN = 7023, FP = 25, FN = 159, TP =
4841. Training and validation losses converged smoothly,
and SHAP analysesconfirmed thateach of the fourretained
features contributes meaningfully and consistently—

domain adaptation. Overall, the results validate a clear
message: with careful, model guided reduction, four features
are enough to deliver accurate, transparent, and deployable
XSS detection.

REFERENCES

[1] Nair, S. S. (2024). Securing against advanced cyber threats: A
comprehensive guide to phishing, XSS, and SQL injection defense.
Journal of Computer Science and Technology Studies, 6(1), 76-93.

[2] Rodriguez, G.E., Torres, J. G., Flores, P., & Benavides, D. E. (2020).
Cross-site scripting (XSS) attacks and mitigation: A survey.
Computer Networks, 166, 106960.

[3] Steffens, M., Rossow,C., Johns, M., & Stock, B. (2019a). Don’t Trust
The Locals: Investigating the Prevalence of Persistent Client-Side
Cross-Site Scripting in the Wild.

[4] Wang, Q., Chen,J., Jiang, Z., Guo, R., Liu, X., Zhang, C., & Duan,
H. (2024). Break the Wall from Bottom: Automated Discovery of
Protocol-Level Evasion VVulnerabilities in Web Application Firewalls.
2024 IEEE Symposium on Security and Privacy (SP), 185-202.
https://doi.org/10.1109/SP54263.2024.00129

[5] Hannousse, A., Yahiouche, S., & Nait-Hamoud, M. C. (2024).
Twenty-two years since revealing cross-site scripting attacks: A
systematic mapping and a comprehensive survey. Computer Science
Review, 52, 100634. https://doi.org/10.1016/j.cosrev.2024.1006 34

[6] Caturano, F., Perrone, G., & Romano, S. P. (2021). Discovering
reflected cross-sitescripting vulnerabilitiesusinga multiobjective
reinforcement learning environment. Computers & Security, 103,
102204. https://doi.org/10.1016/j.cose.2021.102204

[71 Kaur, J., Garg, U., & Bathla, G. (2023). Detection of cross-site
scripting (XSS) attacks using machine leaming techniques: A review.
Artificial Intelligence Review, 56(11), 12725-12769.
https://doi.org/10.1007/s10462-023-10433-3

[8] Buyukkayhan, A. S., Gemicioglu, C., Lauinger, T., Oprea, A.,
Robertson, W., & Kirda, E. (2020). What’s in an Exploit? An
Empirical Analysis of Reflected Server {XSS} Exploitation
Techniques. 107-120.

[9] Fang, Y. Li, Y, Liu, L. &Huang, C. (2018). DeepXSS: Cross site
scripting detection based ondeep learning. 47-51.

100

International Journalof Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

[10] Guan, H., Li, D., Li, H., & Zhao, M. (2022). A Crawler-Based
Vulnerability Detection Method for Cross-Site Scripting Attacks.
651-655.

[11] Kumar,J. H., & Ponsam, J. G. (2023). Crosssite scripting (XSS)
Vulnerability detection using machine learning and statistical
analysis. 1-9.

[12] Mereani, F. A., & Howe, J. M. (2018). Detecting cross-site scripting
attacks using machinelearning. 200-210.

[13] Mereani, F., & Howe, J. M. (2019). Exact and approximate rule
extraction from neural networks with Boolean features. 1, 424-433.

[14] Kascheev, S., & Olenchikova, T. (2020). The detecting cross-site
scripting (XSS) using machine learning methods. 265-270.

[15] Chen, H.-C., Nshimiyimana, A., Damarjati, C., & Chang, P.-H.
(2021). Detectionand prevention of cross-site scripting attack with
combined approaches. 1-4.

[16] Rodriguez-Galan, G., & Torres, J. (2024).Personal data filtering: A
systematic literature review comparing the effectiveness of XSS
attacks in web applications vs cookie stealing. Annals of
Telecommunications, 79(11), 763-802.

[17] Hajjouz, A., & Avksentieva, E. (2025). Highly Accurate XSS
Detection using CatBoost. International Journal of Open Information
Technologies, 13(6), 125-131.

101

