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Abstract— Cross-Site Scripting (XSS) remains a high-impact 

web threat despite widespread defensive mechanisms. Building 

on our prior study, we ask: how few features are needed to 
preserve near-ceiling detection quality? Starting after 

correlation-based de-redundancy, we iteratively prune features 

using CatBoost feature importance and SHAP values, 

retraining at each step on the same stratified, SMOTENC-

balanced splits. The process yields an ultra-compact classifier 
using four features only. On the fixed test set, the model attains 

Accuracy = 0.984728, MCC = 0.9687, ROC-AUC = 0.9932, AP 

≈ 0.99, Precision (macro) = 0.986362, Recall (macro) = 

0.982326, and F1 (macro) = 0.98421; the confusion counts are 

TN = 7023, FP = 25, FN = 159, TP = 4841. Training/validation 
losses converge smoothly, and SHAP beeswarm plots show that 

all four retained features contribute consistently across many 

instances, explaining the strong threshold-free metrics. These 

results demonstrate that accurate, interpretable, and 

deployment-ready XSS detection is achievable with a minimal 
feature budget. 

 

Keywords— Cross Site Scripting, XSS, CatBoost, SHAP, 
feature selection, lightweight models, interpretability. 

 

I. INTRODUCTION 

In the ever-changing landscape of cyber threats, Cross-

Site Scripting (XSS) continues to challenge web security at 

scale [1]. By injecting malicious scripts into vulnerable 

applications, attackers jeopardize data integrity and user 

safety and can pivot rapidly across systems [2–3]. While 

Web Application Firewalls (WAFs) mitigate a portion of 

attacks, gaps persist when unsafe coding patterns reach 

production or when payloads are deliberately obfuscated to 

evade rule-based defenses [4]. Incident reports on major 

platforms repeatedly highlight the operational impact of 

XSS, and industry surveys continue to rank it among the 

most reported and severe web vulnerabilities [5–8]. These 

trends underscore the need for detection strategies that are 

both precise and operationally efficient. 

Machine learning has emerged as a strong candidate for 

XSS detection, spanning deep-learning pipelines with 

sequence embeddings and LSTMs, crawler-assisted testing, 

and classical models such as SVMs, k-NN, Random Forests, 

and Decision Trees [9–16]. Yet many systems remain 

feature-rich and computationally heavy, which complicates 

real-time deployment in resource-constrained environments 
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such as in-line gateways, edge nodes, and large-scale multi-

tenant services. This paper addresses that bottleneck by 

explicitly investigating the minimal signal required for 

reliable XSS classification. 

Our study builds on our previous work [17], which 

established the dataset, preprocessing pipeline, stratified 

sampling with SMOTENC balancing, and correlation-based 

de-redundancy. Here we start after the correlated features 

have been removed and pursue an iterative, model-driven 

reduction guided by CatBoost feature importance and 

SHAP. At each step we retrain and re-evaluate on fixed 

splits, enabling paired comparisons across the entire 

reduction path. The central question is whether a drastically 

reduced feature set can retain high discrimination while 

remaining interpretable. 

The contributions of this paper are threefold. First, we 

present a transparent reduction path that terminates in a 

four-feature CatBoost classifier while preserving stability in 

training and generalization on held-out data. Second, we 

formalize an evaluation protocol that emphasizes thresho ld -

free assessment and consistency checks under fixed, 

stratified splits, aligning with deployment realities. Third, 

we provide interpretable explanations via SHAP that justify 

the selected signals—Contains Less-Than, ScriptTag, 

Contains Question-Mark, and Contains Comma—

highlighting how compact, semantically meaningful 

indicators can support simpler, faster, and more portable 

defenses without sacrificing clarity of decision rationale. 

II. METHOLOGY 

A. Continuity with Prior Work 

This study explicitly builds on our previous research [17]. 

We reuse the same dataset, preprocessing, stratified 

sampling and SMOTENC balancing, and the hierarchical 

Spearman-based feature de-redundancy already established  

and validated in [17]. The present work starts after 

correlated features have been removed and focuses on 

deleting features based on model feature importance and 

SHAP values, followed by grid-searched CatBoost training 

and a transparent, weighted model-selection stage. 

B. Model Development Process Flow 

The development pipeline follows a systematic, iterative 

flow aimed at balancing model complexity with 

discriminative performance. A baseline CatBoost model is 

first trained using the full feature set to establish an upper 

bound for accuracy and a reference point for subsequent 

reductions. Guided by the correlation analysis already 
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performed in [17], features exhibiting strong redundancy are 

pruned, which yields a streamlined set upon which the 

present paper operates. The core loop then proceeds in 

iterations: at each iteration, a CatBoost model is trained a nd  

tuned; its evaluation-set accuracy is recorded; SHAP values 

and model-reported feature importance are computed; and 

features deemed least influential are eliminated. This train–

assess–prune cycle continues while the model’s 

performance is monitored as in [17], and while the evolving 

importance profiles (Fig. 1) inform the next reduction step. 

The loop terminates when the retained features are reduced 

to a compact subset (down to four features), producing the 

sequence of 14 candidate models referenced throughout th is 

work. Each candidate is subsequently considered in a final 

selection stage whose objective is to preserve robust XSS 

detection while minimizing feature count to enable efficient, 

real-world operation.  

C. Deleting Features Based on Feature Importance and 

SHAP Values 

Selecting the right features is crucial for distinguishing 

between benign and malicious inputs while keeping the 

model simple and efficient. We therefore combine model-

reported feature importance with SHAP values to guide an 

iterative pruning process that preserves interpretability. 

We proceed after the correlated features have been 

removed. At each iteration, a CatBoost model is trained on 

the current feature set; we then (i) compute feature 

importance and SHAP va lues, (ii) identify features with low 

mean absolute SHAP and low importance rankings (i.e., 

minimal impact on predictions), (iii) remove those least-

influential features, and (iv) retrain the model on the 

reduced set. After every removal step, we re-evaluate key 

metrics—accuracy, precision, recall, and F1—to verify that 

pruning does not degrade discriminative performance. This 

train–assess–prune cycle continues until a  compact subset  is 

obtained (down to four features in our case). 

To quantify importance in tree ensembles, we use the 

split-gain formulation: 

 

where ∆Gt(f) is the improvement in the objective 

function (e.g., Gini impurity or entropy) due to splits on 

feature f in tree t, and T is the total number of trees. 

 

In this expression, ϕi is the SHAP value for feature i, F is 

the set of all features, x is the input instance, S is a subset of 

F excluding i, and f(S) is the model output using features in 

S. Aggregating SHAP values across instances yields mean 

absolute SHAP profiles and class-specific plots that clarify 

how features influence benign and attack predictions, which 

in turn guide the next pruning step. 

In short, the dual use of model importance and SHAP 

provides complementary, transparent signals: global 

contributions from split gains and loca l contributions from 

SHAP. Evaluating after each deletion ensures that the final, 

minimal feature set maintains the desired balance between 

interpretability and accuracy. 

III. RESULTS 

To evaluate the four-feature CatBoost classifier for Cross-

Site Scripting (XSS), we examine the test-set confusion 

matrix (Fig. 2), which aligns predictions with ground truth 

into true positives (TP), true negatives (TN), false positives 

(FP; benign requests incorrectly flagged—Type I error), and 

false negatives (FN; attacks incorrectly accepted—Type II 

error); on the fixed split the counts are TN = 7023, FP = 25, 

FN = 159, TP = 4841 (7048 benign, 5000 malicious; total = 

12 048), yielding 98.47% overall accuracy, TPR/Recall 

(attacks) = 96.82% (4841/5000), TNR/Specificity (benign) = 

99.65% (7023/7048), FPR = 0.35% (25/7048), FNR = 

3.18% (159/5000), Precision (attacks) = 99.49% 

(4841/(4841+25)), and NPV = 97.79% (7023/(7023+159)); 

together these figures indicate a very low alarm rate on 

benign traffic while capturing the vast majority of attacks, 

and they are consistent with the paper’s aggrega te metrics 
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Figure 1: Feature Importances for XSS Detection Model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

marginal contribution of each feature to the model’s output for individual predictions. 
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(e.g., MCC = 0.9687, macro-Recall = Balanced Accuracy = 

98.23%), underscoring that high discrimination is retained 

despite the aggressive reduction to just four input features.  

 
Figure 2: Confusion Matrix of the four feature 

CatBoostClassifier on the test set.  

 

Figure 3 traces the training and validation loss across 

boosting iterations. Both curves drop sharply at the start, 

showing that the model captures the signal quickly; a clear 

“knee” appears after the early rounds (roughly the first few 

dozen iterations), after which improvements taper and both 

curves flatten toward low values. The generalization gap 

between training and validation remains small and stable 

throughout, with no la te-stage rise in validation loss, 

indicating stable learning without harmful overfitting under 

the chosen CatBoost settings. The smooth, non-oscillatory 

profiles also suggest well-tuned optimization and that an 

early-stopping checkpoint near the validation minimum 

would retain performance while limiting computation . 

Overall, the dynamics confirm that reducing to four features 

does not impede convergence or stability and aligns with the 

strong aggregate metrics reported later. 

 
Figure 3: CatBoost Training and Validation Loss Over 

Iterations.   

 

To evaluate threshold behavior, we examine the Receiver 

Operating Characteristic (ROC), which traces the True 

Positive Rate (TPR/sensitivity) against the False Positive 

Rate (FPR = 1 − specificity) as the decision threshold varies. 

The macro-averaged ROC in Fig. 4 hugs the upper-left 

corner and sits far above the no-skill diagonal, yielding 

AUC = 0.9932. This implies that, over random pairs of 

attack vs. benign requests, the classifier ranks the attack 

higher ~99.3% of the time. The steep early rise at very low 

FPR indicates the model can operate in conservative 

regimes—with minimal false alarms—while retaining high 

sensitivity, consistent with the low FPR observed in the 

confusion-matrix analysis. Overall, the ROC confirms 

strong ranking quality independent of any single operating 

threshold. 

  
Figure 4: Overall ROC Curve for the four feature 

CatBoostClassifier 

 

Precision–Recall (PR) curves characterize performance 

under class imbalance by showing how precision varies with 

recall as the decision threshold moves; unlike ROC, PR 

focuses on the quality of positive predictions, which is 

critical in XSS detection where both missed attacks and 

spurious alerts are costly. In Fig. 5, both class-wise curves 

cling to the upper-right region and remain essentially flat at 

high precision across a broad recall range, with a sharp 

precision drop only at extreme recall values. The area under 

each curve is high—AP = 0.9910 for Class 0 (benign) and 

AP = 0.9889 for Class 1 (attack)—yielding a macro-AP ≈ 

0.9900. This shape indicates that the model supports 

conservative operating points (very low false alarms) as well 

as high-recall regimes with minimal precision penalty, 

consistent with the confusion-matrix summary 

(Precision_attack ≈ 99.49%, Recall_attack ≈ 96.82%). 

Overall, the PR analysis confirms strong ranking quality for 

both classes and reinforces the detector’s suitability for 

deployment where precision at high recall is required. 
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Figure 5: Precision–Recall Curves for the four feature 

CatBoostClassifier.   

To understand which inputs drive decisions in such a 

compact model, we examine the global importances and 

local explanation signals along the reduction path. Figure 6 

charts CatBoost’s split-based feature importances per 

candidate model (2→14). As features are removed, 

importance mass is reallocated among the survivors; weak 

indicators quickly sink toward the baseline and are dropped, 

while a small core steadily rises into the top tier. Notably, 

the four signals that remain in the final detector—Contains 

Less-Than, ScriptTag, Contains Question Mark, and 

Contains Comma—progressively dominate the ranking as 

the set shrinks, which is exactly what we expect if they carry 

most of the discriminative signal. Because importances are 

relative within each model, the most reliable way to read 

this plot is by rank order and its stability across models 

rather than by comparing raw magnitudes. 

Figure 7 complements this with mean absolute SHAP 

values for Class 0 (benign) across iterations. Whereas Fig. 6 

summarizes global split usage, SHAP aggregates instance-

wise contributions. The same core features persist with high 

 
Figure 6: Feature importances across models (2–14).  

 
Figure 7: Mean SHAP values for Class 0 across iterations (2–14).  
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mean SHAP across the path, indicating consistent local 

influence over many examples rather than a few outliers. 

Features that are eventually pruned show diminishing SHAP 

profiles prior to removal, and once eliminated their traces 

drop out in subsequent iterations—evidence that the pruning 

loop is guided by genuine contribution rather than noise. 

Together, the two views (global importance and local 

SHAP) converge on the same compact feature set, 

explaining why the model retains high discrimination even 

with a minimal budget. 

 

Figure 8 provides class-wise TreeSHAP explanations for 

the final four-feature model, clarifying how each signal 

shapes decisions. SHAP values are in log-odds: points to the 

right of zero support the plotted class, points to the left 

oppose it; color reflects the raw feature value (warm = high, 

cool = low). In the benign panel (top), high Contains Less-

Than and ScriptTag values yield consistently negative 

contributions clustered left of zero, matching their role as 

attack markers. Contains Question Mark and Contains 

Comma show smaller, bidirectional effects near zero, 

reflecting punctuation that appears in both benign queries 

and obfuscated payloads. 

The attack panel (bottom) mirrors this pattern: Less-Than 

and ScriptTag shift decisively right, contributing strongly 

across many instances, while punctuation features add 

positive evidence mainly when co-occurring with the 

structural markers—suggesting learned interactions rather 

than isolated cues. Two properties aid deployment: high sign  

consistency for the structural features, which makes 

explanations stable and auditable, and a noticeable mass 

near zero for punctuation, which helps maintain low FPR 

while preserving recall. The ordering by mean |SHAP| also 

aligns with the global importance trend (Fig. 8), indicating 

that both global and local views single out the same core 

signals. In practice, operators can tune thresholds for 

conservative modes while monitoring drift by tracking per-

feature mean |SHAP| over time. Together, strong, 

semantically grounded markers plus low-variance 

modulators explain how the compact model stays both 

discriminative and interpretable. Edge cases where 

punctuation dominates without structural cues are rare and 

tend to cluster near the decision boundary, making them 

natural candidates for manual review or margin-based 

alerting. 

 

 
Figure 8: SHAP Value Plots for the four feature model — 

top: Class 0 (benign), bottom: Class 1 (attack).   

 

For reference, Table 1 enumerates the features retained a t  

each step of the reduction sequence; the final Model 14 uses 

indices 41, 2, 25, and 39, which correspond respectively to 

Table 1: Feature indices retained by each XSS detection model along the reduction path . 
Model Feature Index 

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,  4 0,  
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 

2 41, 25, 2, 39, 29, 8, 40, 62, 27, 64, 6, 7, 10, 63, 1, 31, 24, 36, 9, 54, 11 , 18, 44, 46, 49, 35, 45, 12, 3, 13, 23, 16, 4, 14, 34, 43, 30, 60, 47, 59, 
21, 55, 52, 15, 20, 5 

3 41, 25, 39, 2, 29, 62, 40, 8, 7, 27, 64, 6, 10, 1, 63, 31, 36, 24, 9, 46, 54, 49, 18, 11, 3, 44, 45, 13, 35, 23, 16, 12, 4, 1 4, 43, 34, 30, 60, 15, 47 

4 41, 25, 39, 2, 29, 40, 62, 7, 27, 8, 64, 6, 31, 10, 1 , 63, 9, 36, 46, 54, 18, 49, 11, 24, 45, 44, 13, 23, 12, 4  

5 41, 25, 39, 2, 29, 40, 27, 8, 7, 62, 64, 6, 31, 10, 36, 63, 9, 54, 49, 11 

6 41, 25, 39, 2, 29, 40, 64, 8, 7, 6, 62, 10, 27, 31, 63, 36, 54 

7 25, 41, 39, 29, 2, 40, 27, 64, 8, 6, 63, 31 

8 41, 25, 39, 29, 2, 40, 8, 64, 27, 6, 63 

9 41, 25, 39, 27, 2, 40, 6, 8, 64, 63 

10 41, 25, 39, 2, 27, 64, 6, 63. 

11 41, 25, 39, 27,2, 64, 6 

12 41, 25, 39, 2, 27, 64 

13 41, 25, 39, 27, 2 

14 41, 2, 25, 39 

Index and feature 

1 Contains &lt, 2 ScripTag, 3 Readable, 4 Contains "><, 5 Contains ><, 6 Contains And, 7 Contains Percentage, 8 Contains Slas h, 9 Contains BackSlash,  
10 Contains Plus, 11 Contains Document, 12 Contains Window, 13 Contains Onload, 14 Contains Onerror, 15 Contains DIV, 1 6 Co n tain s if r am e,  1 7 
Contains img, 18 Contains SRC, 19 Containss Var, 20 Contains Eval, 21 Contains href, 22 Contains Cookie, 23 Co ntains Str in gf r om CharCo de,  2 4 
Contains Single Quote, 25 Contains Question Mark, 26 Contains Exclamation Mark, 27 Contains Semicolon, 28 Contains HTTP,  2 9 Co n tain s JS,  3 0  

Contains Hash, 31 Contains Equal, 32 Contains Open Bracket, 33 Contains Close Bracket, 34 Contains Duble Bracket, 35 Contains Dollar, 36 Co n tain s 
Open Parenthesis, 37 Contains Close Parenthesis, 38 Contains Asterisk, 39 Contains Comma, 40 Contains Hyphen, 41 Contains Less Than, 42 Co ntains 
Greater Than, 43 Contains At, 44 Contains Underscore, 45 Contains location, 46 Contains Search, 47 Contains &#, 48 Contains Colon, 49 Contains Dots, 
50 Contains Open Brace, 51 Contains Close Brace, 52 Contains tilde, 53 Contains Spase, 54 Contains Qutions, 55 Contains Grave, 5 6  Co ntains  Du ble 

Equals, 57 Contains Duble Slash, 58 Contains Vertical Bar, 59 Contains Power, 60 Contains Broken Bar, 61 Contains Alert, 62 Contains Break Lin e, 6 3  
Letters Ratio, 64 Numbuers Ratio, 65 Symbols Ratio 
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Contains Less-Than, ScriptTag, Contains Question-Mark, 

and Contains Comma. Table 2 reports the full set of test-set 

metrics for all models. The four-feature classifier attains 

Accuracy = 0.984728, MCC = 0.9687, ROC-AUC = 0.9932, 

AP = 0.9910, Precision = 0.986362, Recall = 0.982326, and 

F1 = 0.98421, confirming that near-ceiling discrimination is 

preserved despite aggressive pruning. 

 

Table 2 contais comparative test-set performance across 

models. Accuracy, Precision, Recall, and F1 are macro-

averaged. The AP column reports macro-AP; for the four-

feature model the per-class APs are 0.9910 and 0.9889, 

yielding a macro-AP of approximately 0.9900. 

The retained signals align with practical web-

programming semantics. ScriptTag marks explicit \<script 

occurrences, whereas Less-Than flags entry into any 

HTML-tag context; not only scripts (e.g., <img 

onerror=…>, <svg onload=…>, <a href="javascript:…">). 

Question-Mark commonly appears in query-string payloads 

and obfuscation patterns, and Comma frequently arises in 

JavaScript argument lists and String.fromCharCode(…) 

constructs. SHAP analyses (Fig. 8) show that punctuation 

features contribute only minor, bidirectional evidence near 

zero and become discriminative chiefly when co-occurring 

with the structural markers, which explains the low FPR 

alongside solid recall. Together, these patterns indicate the 

model is not restricted to <script>-based injections but 

captures broader tag- and event-handler-based vectors. 

IV. CONCLUSION 

This paper demonstrated that ultra lightweight XSS 

detection is feasible without a material loss in discriminative 

power. Starting from the pipeline established in [17] and 

operating after correlation-based pruning, we iteratively 

removed features using CatBoost importance and SHAP 

guidance until reaching a four feature model. On the fixed 

test split, the classifier achieved Accuracy = 0.984728, MCC 

= 0.9687, ROC AUC = 0.9932, AP = 0.9910, Precision = 

0.986362, Recall = 0.982326, and F1 = 0.98421, with 

confusion counts TN = 7023, FP = 25, FN = 159, TP = 

4841. Training and validation losses converged smoothly, 

and SHAP analyses confirmed that each of the four retained  

features contributes meaningfully and consistently—

evidence that the predictive signal concentrates in a 

compact, interpretable subset. 

The practical implications are direct: a  smaller feature 

footprint simplifies data collection and preprocessing, 

reduces memory and latency, and facilitates deployment in 

resource constrained or real time settings without sacrificing 

robustness. While the present study focuses on the 

established dataset and fixed splits from [17], future work 

can broaden external validity by testing on heterogeneous 

web applications, evolving payloads, and adversarially 

crafted inputs, and by exploring probability calibration and 

domain adaptation. Overall, the results validate a clear 

message: with careful, model guided reduction, four features 

are enough to deliver accurate, transparent, and deployable 

XSS detection. 
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