
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

95

Abstract— Cross-Site Scripting (XSS) remains a high-impact

web threat despite widespread defensive mechanisms. Building

on our prior study, we ask: how few features are needed to
preserve near-ceiling detection quality? Starting after

correlation-based de-redundancy, we iteratively prune features

using CatBoost feature importance and SHAP values,

retraining at each step on the same stratified, SMOTENC-

balanced splits. The process yields an ultra-compact classifier
using four features only. On the fixed test set, the model attains

Accuracy = 0.984728, MCC = 0.9687, ROC-AUC = 0.9932, AP

≈ 0.99, Precision (macro) = 0.986362, Recall (macro) =

0.982326, and F1 (macro) = 0.98421; the confusion counts are

TN = 7023, FP = 25, FN = 159, TP = 4841. Training/validation
losses converge smoothly, and SHAP beeswarm plots show that

all four retained features contribute consistently across many

instances, explaining the strong threshold-free metrics. These

results demonstrate that accurate, interpretable, and

deployment-ready XSS detection is achievable with a minimal
feature budget.

Keywords— Cross Site Scripting, XSS, CatBoost, SHAP,
feature selection, lightweight models, interpretability.

I. INTRODUCTION

In the ever-changing landscape of cyber threats, Cross-

Site Scripting (XSS) continues to challenge web security at

scale [1]. By injecting malicious scripts into vulnerable

applications, attackers jeopardize data integrity and user

safety and can pivot rapidly across systems [2–3]. While

Web Application Firewalls (WAFs) mitigate a portion of

attacks, gaps persist when unsafe coding patterns reach

production or when payloads are deliberately obfuscated to

evade rule-based defenses [4]. Incident reports on major

platforms repeatedly highlight the operational impact of

XSS, and industry surveys continue to rank it among the

most reported and severe web vulnerabilities [5–8]. These

trends underscore the need for detection strategies that are

both precise and operationally efficient.

Machine learning has emerged as a strong candidate for

XSS detection, spanning deep-learning pipelines with

sequence embeddings and LSTMs, crawler-assisted testing,

and classical models such as SVMs, k-NN, Random Forests,

and Decision Trees [9–16]. Yet many systems remain

feature-rich and computationally heavy, which complicates

real-time deployment in resource-constrained environments

Manuscript received September 21, 2025.
Abdulkader Hajjouz is with the National Research Univers ity ITMO,

Saint Petersburg, 191002 Russia (phone: +79693483331; e-mail:

hajjouz@itmo.ru).
Elena Avksentieva is with the National Research Univ er sity ITMO,

Saint Petersburg, 191002 Russia (e-mail: eavksenteva@itmo.ru).

such as in-line gateways, edge nodes, and large-scale multi-

tenant services. This paper addresses that bottleneck by

explicitly investigating the minimal signal required for

reliable XSS classification.

Our study builds on our previous work [17], which

established the dataset, preprocessing pipeline, stratified

sampling with SMOTENC balancing, and correlation-based

de-redundancy. Here we start after the correlated features

have been removed and pursue an iterative, model-driven

reduction guided by CatBoost feature importance and

SHAP. At each step we retrain and re-evaluate on fixed

splits, enabling paired comparisons across the entire

reduction path. The central question is whether a drastically

reduced feature set can retain high discrimination while

remaining interpretable.

The contributions of this paper are threefold. First, we

present a transparent reduction path that terminates in a

four-feature CatBoost classifier while preserving stability in

training and generalization on held-out data. Second, we

formalize an evaluation protocol that emphasizes thresho ld -

free assessment and consistency checks under fixed,

stratified splits, aligning with deployment realities. Third,

we provide interpretable explanations via SHAP that justify

the selected signals—Contains Less-Than, ScriptTag,

Contains Question-Mark, and Contains Comma—

highlighting how compact, semantically meaningful

indicators can support simpler, faster, and more portable

defenses without sacrificing clarity of decision rationale.

II. METHOLOGY

A. Continuity with Prior Work

This study explicitly builds on our previous research [17].

We reuse the same dataset, preprocessing, stratified

sampling and SMOTENC balancing, and the hierarchical

Spearman-based feature de-redundancy already established

and validated in [17]. The present work starts after

correlated features have been removed and focuses on

deleting features based on model feature importance and

SHAP values, followed by grid-searched CatBoost training

and a transparent, weighted model-selection stage.

B. Model Development Process Flow

The development pipeline follows a systematic, iterative

flow aimed at balancing model complexity with

discriminative performance. A baseline CatBoost model is

first trained using the full feature set to establish an upper

bound for accuracy and a reference point for subsequent

reductions. Guided by the correlation analysis already

Minimal-Feature XSS Detection by SHAP and

Importance-Driven Pruning

Abdulkader Hajjouz, Elena Avksentieva

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

96

performed in [17], features exhibiting strong redundancy are

pruned, which yields a streamlined set upon which the

present paper operates. The core loop then proceeds in

iterations: at each iteration, a CatBoost model is trained a nd

tuned; its evaluation-set accuracy is recorded; SHAP values

and model-reported feature importance are computed; and

features deemed least influential are eliminated. This train–

assess–prune cycle continues while the model’s

performance is monitored as in [17], and while the evolving

importance profiles (Fig. 1) inform the next reduction step.

The loop terminates when the retained features are reduced

to a compact subset (down to four features), producing the

sequence of 14 candidate models referenced throughout th is

work. Each candidate is subsequently considered in a final

selection stage whose objective is to preserve robust XSS

detection while minimizing feature count to enable efficient,

real-world operation.

C. Deleting Features Based on Feature Importance and

SHAP Values

Selecting the right features is crucial for distinguishing

between benign and malicious inputs while keeping the

model simple and efficient. We therefore combine model-

reported feature importance with SHAP values to guide an

iterative pruning process that preserves interpretability.

We proceed after the correlated features have been

removed. At each iteration, a CatBoost model is trained on

the current feature set; we then (i) compute feature

importance and SHAP va lues, (ii) identify features with low

mean absolute SHAP and low importance rankings (i.e.,

minimal impact on predictions), (iii) remove those least-

influential features, and (iv) retrain the model on the

reduced set. After every removal step, we re-evaluate key

metrics—accuracy, precision, recall, and F1—to verify that

pruning does not degrade discriminative performance. This

train–assess–prune cycle continues until a compact subset is

obtained (down to four features in our case).

To quantify importance in tree ensembles, we use the

split-gain formulation:

where ∆Gt(f) is the improvement in the objective

function (e.g., Gini impurity or entropy) due to splits on

feature f in tree t, and T is the total number of trees.

In this expression, ϕi is the SHAP value for feature i, F is

the set of all features, x is the input instance, S is a subset of

F excluding i, and f(S) is the model output using features in

S. Aggregating SHAP values across instances yields mean

absolute SHAP profiles and class-specific plots that clarify

how features influence benign and attack predictions, which

in turn guide the next pruning step.

In short, the dual use of model importance and SHAP

provides complementary, transparent signals: global

contributions from split gains and loca l contributions from

SHAP. Evaluating after each deletion ensures that the final,

minimal feature set maintains the desired balance between

interpretability and accuracy.

III. RESULTS

To evaluate the four-feature CatBoost classifier for Cross-

Site Scripting (XSS), we examine the test-set confusion

matrix (Fig. 2), which aligns predictions with ground truth

into true positives (TP), true negatives (TN), false positives

(FP; benign requests incorrectly flagged—Type I error), and

false negatives (FN; attacks incorrectly accepted—Type II

error); on the fixed split the counts are TN = 7023, FP = 25,

FN = 159, TP = 4841 (7048 benign, 5000 malicious; total =

12 048), yielding 98.47% overall accuracy, TPR/Recall

(attacks) = 96.82% (4841/5000), TNR/Specificity (benign) =

99.65% (7023/7048), FPR = 0.35% (25/7048), FNR =

3.18% (159/5000), Precision (attacks) = 99.49%

(4841/(4841+25)), and NPV = 97.79% (7023/(7023+159));

together these figures indicate a very low alarm rate on

benign traffic while capturing the vast majority of attacks,

and they are consistent with the paper’s aggrega te metrics

Input Dataset

DATA ANALYSIS AND CLEANUP

STRATIFIED SAMPLING AND CLASS BALANCING

 st repetition?

Utilize the entire feature set to

establish a baseline

2nd repetition?

Apply Spearman's correlation to

eliminate highly correlated features

Reduce the number of features depending on the values

(SHAP and importance Features) of the previous model

Grid Search and Train Catboost Model

Output model for selected features

>=4 features

no

yes

yes

yes

no

no

Calculate Overall Accuracy, MCC, ROC-AUC, AP,

Precision, Recall, F1-score

Choosing the best model with the

highest accuracy on the evaluation set

Calculate importances using the CatBoostClassifier

model and SHAP values for each classe

Start

End

Figure 1: Feature Importances for XSS Detection Model.

marginal contribution of each feature to the model’s output for individual predictions.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

97

(e.g., MCC = 0.9687, macro-Recall = Balanced Accuracy =

98.23%), underscoring that high discrimination is retained

despite the aggressive reduction to just four input features.

Figure 2: Confusion Matrix of the four feature

CatBoostClassifier on the test set.

Figure 3 traces the training and validation loss across

boosting iterations. Both curves drop sharply at the start,

showing that the model captures the signal quickly; a clear

“knee” appears after the early rounds (roughly the first few

dozen iterations), after which improvements taper and both

curves flatten toward low values. The generalization gap

between training and validation remains small and stable

throughout, with no la te-stage rise in validation loss,

indicating stable learning without harmful overfitting under

the chosen CatBoost settings. The smooth, non-oscillatory

profiles also suggest well-tuned optimization and that an

early-stopping checkpoint near the validation minimum

would retain performance while limiting computation .

Overall, the dynamics confirm that reducing to four features

does not impede convergence or stability and aligns with the

strong aggregate metrics reported later.

Figure 3: CatBoost Training and Validation Loss Over

Iterations.

To evaluate threshold behavior, we examine the Receiver

Operating Characteristic (ROC), which traces the True

Positive Rate (TPR/sensitivity) against the False Positive

Rate (FPR = 1 − specificity) as the decision threshold varies.

The macro-averaged ROC in Fig. 4 hugs the upper-left

corner and sits far above the no-skill diagonal, yielding

AUC = 0.9932. This implies that, over random pairs of

attack vs. benign requests, the classifier ranks the attack

higher ~99.3% of the time. The steep early rise at very low

FPR indicates the model can operate in conservative

regimes—with minimal false alarms—while retaining high

sensitivity, consistent with the low FPR observed in the

confusion-matrix analysis. Overall, the ROC confirms

strong ranking quality independent of any single operating

threshold.

Figure 4: Overall ROC Curve for the four feature

CatBoostClassifier

Precision–Recall (PR) curves characterize performance

under class imbalance by showing how precision varies with

recall as the decision threshold moves; unlike ROC, PR

focuses on the quality of positive predictions, which is

critical in XSS detection where both missed attacks and

spurious alerts are costly. In Fig. 5, both class-wise curves

cling to the upper-right region and remain essentially flat at

high precision across a broad recall range, with a sharp

precision drop only at extreme recall values. The area under

each curve is high—AP = 0.9910 for Class 0 (benign) and

AP = 0.9889 for Class 1 (attack)—yielding a macro-AP ≈

0.9900. This shape indicates that the model supports

conservative operating points (very low false alarms) as well

as high-recall regimes with minimal precision penalty,

consistent with the confusion-matrix summary

(Precision_attack ≈ 99.49%, Recall_attack ≈ 96.82%).

Overall, the PR analysis confirms strong ranking quality for

both classes and reinforces the detector’s suitability for

deployment where precision at high recall is required.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

98

Figure 5: Precision–Recall Curves for the four feature

CatBoostClassifier.

To understand which inputs drive decisions in such a

compact model, we examine the global importances and

local explanation signals along the reduction path. Figure 6

charts CatBoost’s split-based feature importances per

candidate model (2→14). As features are removed,

importance mass is reallocated among the survivors; weak

indicators quickly sink toward the baseline and are dropped,

while a small core steadily rises into the top tier. Notably,

the four signals that remain in the final detector—Contains

Less-Than, ScriptTag, Contains Question Mark, and

Contains Comma—progressively dominate the ranking as

the set shrinks, which is exactly what we expect if they carry

most of the discriminative signal. Because importances are

relative within each model, the most reliable way to read

this plot is by rank order and its stability across models

rather than by comparing raw magnitudes.

Figure 7 complements this with mean absolute SHAP

values for Class 0 (benign) across iterations. Whereas Fig. 6

summarizes global split usage, SHAP aggregates instance-

wise contributions. The same core features persist with high

Figure 6: Feature importances across models (2–14).

Figure 7: Mean SHAP values for Class 0 across iterations (2–14).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

99

mean SHAP across the path, indicating consistent local

influence over many examples rather than a few outliers.

Features that are eventually pruned show diminishing SHAP

profiles prior to removal, and once eliminated their traces

drop out in subsequent iterations—evidence that the pruning

loop is guided by genuine contribution rather than noise.

Together, the two views (global importance and local

SHAP) converge on the same compact feature set,

explaining why the model retains high discrimination even

with a minimal budget.

Figure 8 provides class-wise TreeSHAP explanations for

the final four-feature model, clarifying how each signal

shapes decisions. SHAP values are in log-odds: points to the

right of zero support the plotted class, points to the left

oppose it; color reflects the raw feature value (warm = high,

cool = low). In the benign panel (top), high Contains Less-

Than and ScriptTag values yield consistently negative

contributions clustered left of zero, matching their role as

attack markers. Contains Question Mark and Contains

Comma show smaller, bidirectional effects near zero,

reflecting punctuation that appears in both benign queries

and obfuscated payloads.

The attack panel (bottom) mirrors this pattern: Less-Than

and ScriptTag shift decisively right, contributing strongly

across many instances, while punctuation features add

positive evidence mainly when co-occurring with the

structural markers—suggesting learned interactions rather

than isolated cues. Two properties aid deployment: high sign

consistency for the structural features, which makes

explanations stable and auditable, and a noticeable mass

near zero for punctuation, which helps maintain low FPR

while preserving recall. The ordering by mean |SHAP| also

aligns with the global importance trend (Fig. 8), indicating

that both global and local views single out the same core

signals. In practice, operators can tune thresholds for

conservative modes while monitoring drift by tracking per-

feature mean |SHAP| over time. Together, strong,

semantically grounded markers plus low-variance

modulators explain how the compact model stays both

discriminative and interpretable. Edge cases where

punctuation dominates without structural cues are rare and

tend to cluster near the decision boundary, making them

natural candidates for manual review or margin-based

alerting.

Figure 8: SHAP Value Plots for the four feature model —

top: Class 0 (benign), bottom: Class 1 (attack).

For reference, Table 1 enumerates the features retained a t

each step of the reduction sequence; the final Model 14 uses

indices 41, 2, 25, and 39, which correspond respectively to

Table 1: Feature indices retained by each XSS detection model along the reduction path .
Model Feature Index

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4 0,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65

2 41, 25, 2, 39, 29, 8, 40, 62, 27, 64, 6, 7, 10, 63, 1, 31, 24, 36, 9, 54, 11 , 18, 44, 46, 49, 35, 45, 12, 3, 13, 23, 16, 4, 14, 34, 43, 30, 60, 47, 59,
21, 55, 52, 15, 20, 5

3 41, 25, 39, 2, 29, 62, 40, 8, 7, 27, 64, 6, 10, 1, 63, 31, 36, 24, 9, 46, 54, 49, 18, 11, 3, 44, 45, 13, 35, 23, 16, 12, 4, 1 4, 43, 34, 30, 60, 15, 47

4 41, 25, 39, 2, 29, 40, 62, 7, 27, 8, 64, 6, 31, 10, 1 , 63, 9, 36, 46, 54, 18, 49, 11, 24, 45, 44, 13, 23, 12, 4

5 41, 25, 39, 2, 29, 40, 27, 8, 7, 62, 64, 6, 31, 10, 36, 63, 9, 54, 49, 11

6 41, 25, 39, 2, 29, 40, 64, 8, 7, 6, 62, 10, 27, 31, 63, 36, 54

7 25, 41, 39, 29, 2, 40, 27, 64, 8, 6, 63, 31

8 41, 25, 39, 29, 2, 40, 8, 64, 27, 6, 63

9 41, 25, 39, 27, 2, 40, 6, 8, 64, 63

10 41, 25, 39, 2, 27, 64, 6, 63.

11 41, 25, 39, 27,2, 64, 6

12 41, 25, 39, 2, 27, 64

13 41, 25, 39, 27, 2

14 41, 2, 25, 39

Index and feature

1 Contains <, 2 ScripTag, 3 Readable, 4 Contains "><, 5 Contains ><, 6 Contains And, 7 Contains Percentage, 8 Contains Slas h, 9 Contains BackSlash,
10 Contains Plus, 11 Contains Document, 12 Contains Window, 13 Contains Onload, 14 Contains Onerror, 15 Contains DIV, 1 6 Co n tain s if r am e, 1 7
Contains img, 18 Contains SRC, 19 Containss Var, 20 Contains Eval, 21 Contains href, 22 Contains Cookie, 23 Co ntains Str in gf r om CharCo de, 2 4
Contains Single Quote, 25 Contains Question Mark, 26 Contains Exclamation Mark, 27 Contains Semicolon, 28 Contains HTTP, 2 9 Co n tain s JS, 3 0

Contains Hash, 31 Contains Equal, 32 Contains Open Bracket, 33 Contains Close Bracket, 34 Contains Duble Bracket, 35 Contains Dollar, 36 Co n tain s
Open Parenthesis, 37 Contains Close Parenthesis, 38 Contains Asterisk, 39 Contains Comma, 40 Contains Hyphen, 41 Contains Less Than, 42 Co ntains
Greater Than, 43 Contains At, 44 Contains Underscore, 45 Contains location, 46 Contains Search, 47 Contains &#, 48 Contains Colon, 49 Contains Dots,
50 Contains Open Brace, 51 Contains Close Brace, 52 Contains tilde, 53 Contains Spase, 54 Contains Qutions, 55 Contains Grave, 5 6 Co ntains Du ble

Equals, 57 Contains Duble Slash, 58 Contains Vertical Bar, 59 Contains Power, 60 Contains Broken Bar, 61 Contains Alert, 62 Contains Break Lin e, 6 3
Letters Ratio, 64 Numbuers Ratio, 65 Symbols Ratio

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

100

Contains Less-Than, ScriptTag, Contains Question-Mark,

and Contains Comma. Table 2 reports the full set of test-set

metrics for all models. The four-feature classifier attains

Accuracy = 0.984728, MCC = 0.9687, ROC-AUC = 0.9932,

AP = 0.9910, Precision = 0.986362, Recall = 0.982326, and

F1 = 0.98421, confirming that near-ceiling discrimination is

preserved despite aggressive pruning.

Table 2 contais comparative test-set performance across

models. Accuracy, Precision, Recall, and F1 are macro-

averaged. The AP column reports macro-AP; for the four-

feature model the per-class APs are 0.9910 and 0.9889,

yielding a macro-AP of approximately 0.9900.

The retained signals align with practical web-

programming semantics. ScriptTag marks explicit \<script

occurrences, whereas Less-Than flags entry into any

HTML-tag context; not only scripts (e.g., <img

onerror=…>, <svg onload=…>,).

Question-Mark commonly appears in query-string payloads

and obfuscation patterns, and Comma frequently arises in

JavaScript argument lists and String.fromCharCode(…)

constructs. SHAP analyses (Fig. 8) show that punctuation

features contribute only minor, bidirectional evidence near

zero and become discriminative chiefly when co-occurring

with the structural markers, which explains the low FPR

alongside solid recall. Together, these patterns indicate the

model is not restricted to <script>-based injections but

captures broader tag- and event-handler-based vectors.

IV. CONCLUSION

This paper demonstrated that ultra lightweight XSS

detection is feasible without a material loss in discriminative

power. Starting from the pipeline established in [17] and

operating after correlation-based pruning, we iteratively

removed features using CatBoost importance and SHAP

guidance until reaching a four feature model. On the fixed

test split, the classifier achieved Accuracy = 0.984728, MCC

= 0.9687, ROC AUC = 0.9932, AP = 0.9910, Precision =

0.986362, Recall = 0.982326, and F1 = 0.98421, with

confusion counts TN = 7023, FP = 25, FN = 159, TP =

4841. Training and validation losses converged smoothly,

and SHAP analyses confirmed that each of the four retained

features contributes meaningfully and consistently—

evidence that the predictive signal concentrates in a

compact, interpretable subset.

The practical implications are direct: a smaller feature

footprint simplifies data collection and preprocessing,

reduces memory and latency, and facilitates deployment in

resource constrained or real time settings without sacrificing

robustness. While the present study focuses on the

established dataset and fixed splits from [17], future work

can broaden external validity by testing on heterogeneous

web applications, evolving payloads, and adversarially

crafted inputs, and by exploring probability calibration and

domain adaptation. Overall, the results validate a clear

message: with careful, model guided reduction, four features

are enough to deliver accurate, transparent, and deployable

XSS detection.

REFERENCES

[1] Nair, S. S. (2024). Securing against advanced cyber threats: A

comprehensive guide to phishing, XSS, and SQL injection d efense.
Journal of Computer Science and Technology Studies, 6(1), 76–93.

[2] Rodríguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020).
Cross-site scripting (XSS) attacks and mitigation: A survey.

Computer Networks, 166, 106960.
[3] Steffens, M., Rossow, C., Johns, M., & Stock, B. (2019a). Don’t Trust

The Locals: Investigating the Prevalence of Persistent Clien t -Sid e

Cross-Site Scripting in the Wild.
[4] Wang, Q., Chen, J., Jiang, Z., Guo, R., Liu, X., Zhang, C. , & Duan,

H. (2024). Break the Wall from Bottom: Automated Discovery o f
Protocol-Level Evasion Vulnerabilities in Web Application Firewalls.

2024 IEEE Symposium on Security and Privacy (SP), 185–202.
https://doi.org/10.1109/SP54263.2024.00129

[5] Hannousse, A., Yahiouche, S., & Nait-Hamoud, M. C. (2024).
Twenty-two years since revealing cross-site scripting attacks: A

systematic mapping and a comprehensive survey. Computer Science
Review, 52, 100634. https://doi.org/10.1016/j.cosrev.2024.100634

[6] Caturano, F., Perrone, G., & Romano, S. P. (2021). Discovering
reflected cross-site scripting vulnerabilities using a m u ltio bjectiv e

reinforcement learning environment. Computers & Secu rity, 1 03 ,
102204. https://doi.org/10.1016/j.cose.2021.102204

[7] Kaur, J., Garg, U., & Bathla, G. (2023). Detection of cross -site

scripting (XSS) attacks using machine learning techniques: A review.
Artificial Intelligence Review, 56(11), 12725–12769.
https://doi.org/10.1007/s10462-023-10433-3

[8] Buyukkayhan, A. S., Gemicioglu, C., Lauinger, T., Oprea, A.,

Robertson, W., & Kirda, E. (2020). What’s in an Exploit? An
Empirical Analysis of Reflected Server {XSS} Exploitation
Techniques. 107–120.

[9] Fang, Y., Li, Y., Liu, L., & Huang, C. (2018). DeepXSS: Cross site

scripting detection based on deep learning. 47–51.

Table 2: Comparative test-set performance across models. Accuracy, Precision, Recall, and F1 are macro -averaged.
Model Number Of

Features

Accuracy MCC ROC AUC AP Precision Recall F1-score

1 65 0.999751 0.9995 1 1 0.999758 0.999729 0.99974

2 46 0.998755 0.9974 1 1 0.998733 0.998703 0.99872
3 40 0.998589 0.9971 1 1 0.998533 0.998561 0.99855

4 30 0.998672 0.9973 1 1 0.998633 0.998633 0.99863

5 20 0.998506 0.9969 1 1 0.998520 0.998403 0.99846

6 17 0.999087 0.9981 1 1 0.999104 0.999016 0.99906

7 12 0.997510 0.9949 1 1 0.997670 0.997204 0.99744

8 11 0.997759 0.9954 0.9999 0.9999 0.997942 0.997445 0.99769

9 10 0.997427 0.9947 0.9999 0.9999 0.997166 0.997540 0.99735

10 8 0.996680 0.9932 0.9984 0.9988 0.996814 0.996348 0.99658

11 7 0.996431 0.9927 0.9984 0.9987 0.996572 0.996078 0.99632

12 6 0.994273 0.9882 0.9975 0.9975 0.994467 0.993739 0.99410

13 5 0.991783 0.9832 0.9952 0.9949 0.993006 0.990158 0.99151

14 4 0.984728 0.9687 0.9932 0.9910 0.986362 0.982326 0.98421

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

101

[10] Guan, H., Li, D., Li, H., & Zhao, M. (2022). A Crawler -Based
Vulnerability Detection Method for Cross-Site Scripting Attacks.
651–655.

[11] Kumar, J. H., & Ponsam, J. G. (2023). Cross s ite s cr ip ting (XSS)
Vulnerability detection using machine learning and statistical
analysis. 1–9.

[12] Mereani, F. A., & Howe, J. M. (2018). Detecting cross-site scrip ting

attacks using machine learning. 200–210.
[13] Mereani, F., & Howe, J. M. (2019). Exact and approximate rule

extraction from neural networks with Boolean features. 1, 424–433.
[14] Kascheev, S., & Olenchikova, T. (2020). The detecting cro ss - site

scripting (XSS) using machine learning methods. 265–270.

[15] Chen, H.-C., Nshimiyimana, A., Damarjati, C., & Chang, P.-H.
(2021). Detection and prevention of cross-site scripting attack with
combined approaches. 1–4.

[16] Rodríguez-Galán, G., & Torres, J. (2024). Personal data filter ing: A
systematic literature review comparing the effectiveness of XSS
attacks in web applications vs cookie stealing. Annals of
Telecommunications, 79(11), 763–802.

[17] Hajjouz, A., & Avksentieva, E. (2025). Highly Accurate XSS
Detection using CatBoost. International Journal of Open Information
Technologies, 13(6), 125–131.

