
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

129

Abstract—Latency-critical applications tend to show low

utilization of functional units due to frequent cache misses and
mispredictions during speculative execution in high-

performance superscalar processors. However, due to

significant impact on single-thread performance, Simultaneous

Multithreading (SMT) technology is rarely used with heavy

threads of latency-critical applications. In this paper, we
explore utilization of SMT technology to support fine-grained

parallelization of latency-critical applications. Following the

advancements in the development of Large Language Models

(LLMs), we introduce Aira, an AI-powered Parallelization

Adviser. To implement Aira, we extend AI Coding Agent in
Cursor IDE with additional tools connected through Model

Context Protocol, enabling end-to-end AI Agent for

parallelization. Additional connected tools enable LLM-guided

hotspot detection, collection of dynamic dependencies with

Dynamic Binary Instrumentation, SMT-aware performance
simulation to estimate performance gains. We apply Aira with

Relic parallel framework for fine-grained task parallelism on

SMT cores to parallelize latency-critical benchmarks

representing real-world applications used in industry. We show

17% geomean performance gain from parallelization of
latency-critical benchmarks using Aira with Relic framework.

Keywords—parallel computing, advisor, AI-powered, LLM,
parallelization, binary optimization, profile-guided

I. INTRODUCTION

Latency-critical applications require strict adherence to

timing constraints for response times. Failure to meet these

constraints may significantly degrade the user experience,

cause system failure, or pose a serious safety threat.

Latency-critical applications span over a wide range of

domains, such as finance, cloud computing, healthcare,

robotics, autonomous systems, aerospace, online gaming,

and telecommunications. Modern latency-critical services

process more than a billion requests each day.

 To meet new demands, major technology companies

allocate considerable time and resources to enhance the

performance, power efficiency, and effectiveness of latency-

critical applications. Modern high-performance processors

utilize Out-of-Order execution and superscalar architecture

to exploit Instruction-Level Parallelism (ILP) and boost

performance. However, even with all the resources invested

Denis Los – Moscow Institute of Physics and Technology (9 Institu tskiy
per., Dolgoprudny, Moscow Region, 141700, Russian Federation) ORCID:
https://orcid.org/0009-0009-4500-8106 email: los.da@phystech.edu
Igor Petushkov - Moscow Institute of Physics and Technology (9

Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russian
Federation) email: piv-tula@mail.ru .

in performance optimization, latency-critical applications

due to frequent cache misses or branch mispredictions could

have a low ILP, hence, underutilizing available functional

units.

 Simultaneous Multithreading (SMT) [1] technology

allows a single physical processor core to execute

instructions from multiple threads in the same cycle. SMT

technology improves the utilization of functional units by

increasing ILP and improves the overall system throughput

via Thread-Level Parallelism.

 However, Single-Thread (ST) performance might

suffer because of SMT technology. ST performance

degradation presents a significant challenge to using SMT

technology with latency-critical applications.

 Naturally, thread-level parallelism could be exploited

in latency-critical applications and the generated parallel

tasks could be scheduled to logical threads of an SMT core.

To address challenges of parallelization of general-purpose

applications, previous works also explored Thread-Level

Speculation on SMT cores [2]. Helper Threading [3] is

another technique that could use SMT technology to

improve the performance of heavy threads in a latency-

critical application.

 Wide-spread use of thread-level speculation and helper

threading to improve ST performance of heavy threads is

challenging. Thread-Level Speculation requires the support

for transactional memory, while an efficient helper

threading on SMT cores usually requires hardware support.

 Previously, in [4], a specialized parallel programming

framework, called Relic, was introduced. It enables

extremely fine-grained task parallelism on SMT cores.

 In this work, we explore methods to accelerate latency-

critical applications by parallelizing fine-grained kernels

within them using Relic framework. There is a large scope

of work on discovery of parallelism in sequential progra ms.

Recently, Large Language Models (LLMs) emerged as the

promising approach for identification of potential parallel

regions and restructuring of the code. Several works

demonstrate that LLM-based solutions could significantly

outperform traditional methods [5].

However, previous works showed limitations of general-

purpose LLMs, such as GPT models, to produce parallel

code and parallelize sequential code. That’s why in most of

the previous works, specialized LLMs are trained and used

for the tasks involving parallel programming and

parallelization of programs. Training of these specialized

models still require significant computational resources.

Instead of relying on specialized models, we use state-of-

Accelerating Latency-Critical Applications with

AI-Powered Semi-Automatic Fine-Grained

Parallelization on SMT Processors

Denis Los, Igor Petushkov

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

130

the-art general-purpose models, but take a different

approach to improving their efficiency in parallelizing

sequential programs. We integrate our solution directly to a

popular AI Code Editor, called Cursor [6], and use it with its

AI Coding Agent, connecting additional tools to provide

additional context to the model

In this paper, we make the following main contributions:

1) We introduce Aira: AI-powered Parallelization Adviser.

It’s based on the AI Coding Agent used in Cursor IDE

with Claude Sonnet 4 model in its core. We develop

and connect additional tools to the agent through Model

Context Protocol (MCP). Additional functionality that

we add include: sample-based profile collection to

detect hotspot functions, Dynamic Binary

Instrumentation (DBI) tool to collect dynamic

information, binary analysis tool to analyze static

dependencies and collected execution traces

2) We introduce a specification file describing the end-to-

end flow of Aira to the LLM from hotspot detection to

parallel restructuring of code. The specification file is

loaded into the context of the model through MCP. The

optimization flow of Aira could be enabled with a

simple prompt message: “Parallelize this program with

Aira”.

3) We rely on the LLM to annotate promising code

regions after hotspot detection and restructure potential

parallel code regions with Relic framework at the end.

The specification file features examples of the usage of

Relic framework to provide the model with the context.

This allows to do parallel restructuring of code using a

custom parallel programming framework.

4) We develop a binary analysis tool based on Binary

Optimization Layout Tool (BOLT) to analyze static

dependencies and dynamic dependencies with collected

execution traces in the annotated code regions

5) We extend Sniper simulator to analyze a potential

benefit from running the tasks on an SMT core based on

the collected execution traces

6) With Aira, we automatically parallelize latency-critical

applications using Relic framework.

II. RELATED WORK

There is a wide range of existing parallelization tools

coming from decades of research.

 LLVM Polly [7] is the classical tool for parallelization of

loops and improving affinity integrated into LLVM. It uses

an abstract polyhedral model to analyze memory access

patterns. The polyhedral model works best for regular

memory accesses that represent many cases in scientific

computing workloads. GCC has its own framework for

polyhedral analysis called Graphite [8].

 DiscoPop [9] is another tool of semi-automatic program

parallelization. DiscoPoP uses LLVM IR-level

instrumentation to assemble a memory access profile from

all instructions. The runtime library allows you to monitor

memory accesses during execution. In order to reduce

delays caused by profile collection, memory accesses are

written to a hash table, and instructions with repea ted

private accesses are skipped.

 Apollo [10] tool allows to do automatic, dynamic and

speculative parallelization. Apollo features 2 main

components. The first component is the set of extensions fo r

Clang compiler. The second component is a runtime system

that can do instrumentation to collect information about

dynamic memory accesses.

 Par4All [11] is an automatic parallelizing and optimizing

compiler for C and Fortran programs. It is mostly targeted

towards loop parallelization.

 PLUTO [12] uses polyhedral model to find coarse-

grained parallelism in the big code sections, such as nested

loops.

 Other tools for automatic and semi-automatic

parallelization include Intel Adviser XE, ParaMeter, Prism,

SLX Tool Suite.

 Recently emerged AI-Driven tools include OMPar [5],

that uses two models: OMPify and MonoCoder-OMP. The

first one is used to access loop parallelization potential and

the second one is used to generate precise OpenMP

pragmas. Other AI-driven tools for generating OpenMP

pragmas include [13]-[18].

III. ENVIRONMENT

We conduct all experiments on a Linux system with Ubuntu

24.04. The system has Intel Core i7-12700 Alder Lake

processor featuring 8 performance cores and 4 efficient

cores. For all experiments on SMT technology, we use

performance cores with Hyper-Threading technology. Linux

kernel version is 6.14 and glibc is 2.39.

 All benchmarks and parallel programming frameworks

are compiled with Clang compiler from LLVM 20.1.8 with -

O3 optimization option. We use libc++ from LLVM 20.1.8

as the implementa tion of C++ standard library for all

experiments.

 We use Cursor IDE v1.3.9 that is based on VS Code

1.99.3.

IV. ANALYSIS OF THE SMT TECHNOLOGY EFFICIENCY FOR

FINE-GRAINED KERNELS

Many previous works show that performance benefit from

SMT technology strongly depends on an application

[19][20][21]. In general, a pair of tasks running on logical

threads of an SMT core should complement each other and

avoid competing for the same functional units. Compute-

bound kernels fully utilizing available functional units

would not see any benefit from SMT technology or would

see a negative impact. Memory-bound tasks are more likely

to see performance benefit on an SMT core, however, cache

contention between the tasks could lead to degradation of

performance.

 While there have been many works studying the

efficiency of SMT technology, they mostly focused on

coarse-grained tasks. To understand which tasks should be

selected by Aira adviser and study the underlying effects,

we analyze sets of compute-bound and memory-bound fine-

grained kernels running on SMT cores. The kernels are

parallelized with Relic [4] framework and LLVM OpenMP.

For both Relic and LLVM OpenMP, only 2 threads are

used. The threads are scheduled to either a single physical

core with Hyper-Threading or to 2 distinct physical cores.

These two scenarios are referred to with suffixes SMT or

SMP (which stands for Symmetric Multiprocessing),

respectively. We vary granularities of the kernels using the

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

131

corresponding parameters.

 In Fig. 1, for example, performance ga ins from

parallelization with Relic framework and LLVM OpenMP

are shown for the motion update in Particle Filter

Localization (PFL) benchmark from Real-Time Robotics

Benchmark (RTRBench) [22]. This is a compute-bound

benchmark with floating-point operations.

Figure 1. Performance gains from parallelizing motion

update in PFL benchmark with different granularities

 For motion update in PFL benchmark, there is no

significant performance gain from simultaneous

multithreading. For 1000 particles, performance gains are

5.1% and 2.7% for parallelization on an SMT core with

Relic framework and LLVM OpenMP, respectively.

 For small numbers of particles, there is performance

degradation from parallelization due to task scheduling

overheads. However, since task scheduling overhead is

smaller for parallelization on an SMT core, for both Relic

and LLVM OpenMP, SMT-based parallelization shows

higher performance than parallelization on different physical

cores. The performance gains from SMT-based

parallelization for small granularities are still negative. As

expected, Relic framework shows better performance than

LLVM OpenMP on small granularities.

 The interesting observation from Fig. 1 is that for a very

short range of granularities, SMT-based parallelization with

Relic framework shows higher positive performance gain

than SMP-based parallelization with LLVM OpenMP.

 In Fig. 2, performance gains from parallelization with

Relic framework and OpenMP are shown for the CC

benchmark introduced in [4]. It’s a fine-grained memory-

bound graph processing benchmark.

Figure 2. Performance gains from parallelizing CC

benchmark with different granularities

 For very small granularities, there is still performance

degradation for parallelization due to not low enough task

scheduling overheads for the memory-bound CC

benchmark. However, there is a range of granularities, for

which performance speedup from parallelization was ma de

possible by the introduction of Relic framework. This is the

range where SMT-based parallelization with Relic

framework shows positive performance gains and

outperforms SMP-based parallelization. In the same range

of granularities, both SMT-based and SMP-based versions

of parallelization with LLVM OpenMP result in

performance drop due to high task scheduling overheads.

Below this range of granularities, all versions of

parallelization result in performance degradation. Above this

range of granularities, it’s more beneficial to schedule

parallel tasks to different physical cores. These range of

granularities represent the primary target of fine-grained

parallelization on SMT cores.

 Hence, as expected, to effectively parallelize fine-grained

kernels of latency-critical application, Aira adviser should

be able to characterize the kernels and estimate their

granularity.

V. AIRA: AI-POWERED PARALLELIZATION ADVISER

Aira is based on the AI Coding Agent used in Cursor IDE.

We choose Claude Sonnet 4 model to power the agent, since

its outstanding performance on coding benchmarks.

 We develop a specification in Markdown document for

the end-to-end flow of applying Aira. A special MCP tool

loads this document into the context of the model when a

user inputs a prompt asking for parallelization with Aira.

 The specification file starts from collecting sampled

profiles with Linux perf tool with enabled LBR feature. We

develop a wrapper tool to collect sampled profiles, parse

them and provide to the LLM in JSON format representing

the found hot functions.

 Then the model is instructed in the specification file to

annotate promising for parallelization code regions inside of

hotspot functions. The mapping of each annotated region to

the source code line positions is saved in the additional file.

 After adding instrumentation, execution traces featuring

load and store memory accesses with executed basic blocks

are collected with DynamoRIO.

 A program with annotations is passed to a binary analysis

tool. We developed this tool ba sed on Binary Optimization

Layout Tool (BOLT), that is used in LLVM. BOLT is

mainly used for code layout optimization; however, it

provides an extensive framework for binary analysis and

optimization going beyond optimization for code layout.

 For each annotated code region, we check static

dependencies using BOLT, as well as dynamic

dependencies (memory accesses) using collected execution

traces. The binary analysis tool can work with binaries

optimized with -O3 option since it only looks for the

annotation marks. However, the binary analysis tool could

also report found memory dependencies mapping them to

the original variables in the source code through the llvm -

symbolizer tool.

 If there are no conflicts detected during the binary

analysis, potential performance benefit is estimate based on

trace-based Sniper simulator. Sniper simulator, based on

Sniper 7.4 was extended to more accurately model

allocation of issue ports and several functional fixes were

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

132

applied to the SMT model of Sniper. A simplified OOO

model is used in Sniper instead of the interval model for

more accuracy. If there are no conflicts for the code region

and potential performance benefit is reported with the

Sniper performance simulator, the output is generated for

the LLM.

 The next command in the specification files asks for

parallel restructuring of the found regions with Relic parallel

programming framework.

 Since the LLM is not aware of the interface of Relic

framework, we include 20 simple examples of applying

Relic framework to va rious parallelization cases. It shows

possibility to apply Aira to custom frameworks and go

beyond OpenMP parallel programming model.

VI. BENCHMARKS

We have chosen 10 benchmarks that represent a wide range

of real-world latency-critical applications from different

domains, such as cybersecurity, high-frequency trading

(HFT), robotics, social media, recommendation systems,

and aerospace. All of these benchmarks use algorithms

based on linked data structures and may show high cache

miss rates.

A. Geo-Spatial Database System (GeoSpatial)

This benchmark implements a latency-critical geo-spatial

key-value query engine that simulates the critical path of a

geo-spatial database system. Three sequential stages

comprise the query processing system. First, spatial range

queries are performed using a k-dimensional (KD-tree) data

structure to identify objects within rectangular regions

through iterative tree traversal. Second, the metadata

associated with spatially identified objects is retrieved using

a binary search tree. Third, for each query, an aggregated

value is computed after processing linked lists with per-

object metrics.

In the database, we keep 2048 geo-spatial objects,

distributed across a 1000 x 1000 coordinate space. We

perform 1000 warmup iterations and 105 measurement

iterations, where each iteration processes 15 concurrent

rectangular range queries. Rectangular queries span 50 x 50

coordinate units. We limit the maximum number of

identified objects per query to 32.

B. Volume-Weighted Average Price Engine (VWAP)

The volume-weighted average price engine benchmark

implements a latency-critical Volume-Weighted Average

Price (VWAP) computation engine designed for high-

frequency trading market data analytics. The processing

pipeline looks like the following. First, the incoming trade

prices are mapped to discrete order book levels. Skip-list

data structure is used to perform these search operations

efficiently. Then, in the volume aggregation stage, linked-

list traversal is performed to aggregate outstanding volume

at each identified price level. Finally, volume-weighted

average prices are computed over a sliding window using

circular ring buffer traversal.

 Price levels show uniform distribution across $100.00-

$100.99 range with a 1-cent minimum price increment. The

skip-list has four hierarchical levels. The sliding window

size is set to 32 ticks, representing approximately 32-64ms

of market activity at typical message rates. We perform

1000 warmup iterations and 105 measurement iterations,

where 30 concurrent trade messages are processed on each

iteration.

C. Obstacle Detection System (LIDAR)

This benchmark implements a real-time obstacle detection

and collision system designed for autonomous vehicle safety

applications. 3D point cloud data from LIDAR sensors is

processed to determine minimum obstacle distances along

planned vehicle trajectories. The system constructs a

balanced KD-tree data structure from the point cloud

observations to enable efficient processing of spatial

queries. To resolve a safe trajectory, nearest-neighboring

queries are performed.

Point cloud observations are distributed within a 60 x 60 x

60 meter cubic sensing volume, representing a typical

scenario in an urban area. We use 1000 obstacles that are

uniformly distributed throughout the sensing volume,

simulating pedestrians, vehicles, and static infrastructure.

The trajectory is represented using 100 discrete waypoints

with 0.2-meter spatial resolution, resulting in a forward-

looking trajectory of up to 20 meters. We use 1000 warmup

iterations and 105 measured iterations.

D. Social Media Feed Generation System (Timeline)

The Timeline benchmark implements a high-performance

social media feed generation microservice designed to

emulate production-scale content recommendation systems

deployed by major platforms such as Twitter and LinkedIn.

Potential content posts are collected from followed accounts

after traversing the viewer's social graph. The collected

potential content posts are evaluated based on engagement

metrics and temporal decay functions.

For the Timeline benchmark, we use 1000 active accounts

in the social graph. Each user follows from 64 to 192 other

accounts and maintains from 16 to 80 posts in their timeline.

Each post could receive from 5 to 25 reactions. The number

of posts and followed accounts for each user, as well as the

number of reactions for each post, is determined based on a

uniform random distribution. Post timestamps are

distributed across the previous 24-hour period to model

temporal content distribution. The maximum number of

content posts from each user is limited to 8.

E. Random Forest (RF)

This benchmark implements a Random Forest ensemble

consisting of multiple binary decision trees, each

represented as a linked data structure with internal nodes

containing feature indices, thresholds, and pointers to child

nodes.

 The number of decision trees in the ensemble is equal to

256. Each decision tree has a maximum depth of 5. Each

input feature vector has 32 features. We use 1000 warmup

iterations and 105 measurement iterations.

F. Graph Neural Network 1-Hop Embedding (1-Hop)

For this benchmark, the focus is on evaluating the

performance of graph neural network inference systems.

The computation of 1-Hop embeddings is simulated in this

benchmark, a core operation in applications such as social

network analysis and recommendation systems.

 The graph used in this benchmark has 200000 nodes with

an average degree of 256. There are 64 features per node.

For consistency, on each iteration, the embeddings are

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

133

computed for a node with index 0. The number of iterations

is 105.

G. Limit Order Book (LOB)

The LOB benchmark evaluates the performance of high-

frequency trading (HFT) matching engines that process limit

order book updates in real-time financial markets. This

benchmark simulates a multi-symbol order book

management system where each symbol maintains its own

price-level structure, representing the core computational

kernel of latency-critical trading infrastructure. The

benchmark implements a limit order book (LOB) data

structure that maintains price levels in ascending order, with

each level containing a linked list of orders.

 For the LOB benchmark, we use 256 independent trading

symbols. We set the number of order updates per symbol per

iteration to 500. The total number of updates is equal to

128000. Prices are distributed uniformly in the range from

100$ to 101$. We use 100 warmup iterations and 1000

measurement iterations.

H. IP Address Geolocation System (GeoIP)

The GeoIP benchmark implements an ultra -low-latency IP

address geolocation system commonly deployed in content

delivery networks, firewalls, and edge computing

infrastructure. This benchmark features a binary trie data

structure optimized for IPv4 address lookup, where each

node represents a bit position in the 32-bit IP address.

 On each iteration, we process 106 IP addresses. We use

100 warmup iterations and 1000 measurement iterations.

I. Fraud Detection (Fraud)

This benchmark evaluates the performance of graph-based

anomaly detection systems that identify complex network

motifs in large-scale transaction or interaction graphs. This

benchmark implements a 5-vertex fan-in motif detection

algorithm that identifies suspicious patterns where multiple

entities converge on a single target, representing the

computational kernel of real-time fraud detection and

network security systems.

 For this benchmark, we use a graph with 105 vertices and

3 ·105 random background edges. We use 100 warmup

iterations and 1000 measurement iterations. In each

iteration, 1000 edges are tested for pattern completion.

J. 3D Collision Detection System (BVH)

The BVH benchmark evaluates the performance of 3D

collision detection systems used in autonomous vehicles,

robotics, and aerospace applications. This benchmark

implements a Bounding Volume Hierarchy (BVH)-based

collision detection algorithm that identifies potential

collisions between a predicted trajectory and a point cloud

of obstacles, representing the computational kernel of real-

time safety systems.

 For the BVH benchmark, we use 2 ·105 obstacle points in

3D space. We evaluate 10000 trajectory points. For the

environment, we use a 1 km cube. Obstacles are distributed

uniformly across 3D space. We use 100 warmup iterations

and 1000 measurement iterations.

VII. RESULTS

 We apply an end-to-end parallelization pipeline of Aira to

optimize latency-critical benchmark applications. 7 out of

10 latency-critical benchmarks were successfully

automatically parallelized with Relic framework after using

Aira. In Fig. 3, performance gains are shown for each

benchmark with the positive performance impact. Geomea n

performance gain on the benchmarks with positive

performance impact is 25.2%.

Figure 3. Performance gain on latency-critical benchmarks

after applying Aira with Relic framework

3 out of 10 benchmarks could not be successfully

parallelized using Aira with Relic framework. Performance

degradation results for each benchmark are shown in Fig. 4.

Parallelization of Fraud detection benchmark was not found

to be beneficial during performance simulation of the SMT

Core in Sniper simulator. Hence, Relic framework was not

applied and there is no change in the performance of the

Fraud benchmark. However, for 1-Hop and BVH

benchmarks were not flagged during the check in Sniper

simulator, however, the parallelized kernels were too fine-

grained to apply Relic framework. Performance degradation

in the BVH benchmark is 61%. Negative performance

impact in the 1-Hop benchmark is 9%. Real-world latency-

critical application are extensively profiled; hence,

performance degradations are usually discovered and

features with negative impacts are discarded. Without

negative outliers, the geomean performance gain from

applying Aira with Relic framework is 17%.

Figure 4. Performance degradation on some of the latency-

critical benchmarks after applying Aira with Relic

framework

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

134

VIII. CONCLUSION

We introduced Aira, an AI-powered parallelization adviser.

Instead of relying on the specialized LLMs, we used as the

foundation AI Coding Agent used in Cursor IDE that is

powered by Claude Sonnet 4 model. We developed and

integrated additional tools via MCP to do hotspot detection,

collect and analyze dynamic dependencies. We introduced a

specification Markdown file describing the whole

optimization flow of Aira so that Aira could be easily used

without the need to input complex prompts.

 We analyzed efficiency of SMT technology for fine-

grained kernels and extended Sniper performance simulator

to estimate performance gain from the parallelization on

SMT cores based on the collected execution traces and

discard parallelization cases with negative performance

impact.

 We applied Aira with Relic framework to 10 latency-

critical benchmarks representing real-world industry

applications and use cases and achieved average

performance gain of 17%.

REFERENCES

[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, "Simultaneous
multithreading: maximizing on-chip parallelism," in Proc. 22nd
Annual International Symposium on Computer Architecture , San ta
Margherita Ligure, Italy, 1995, pp. 392-403.

[2] V. Packirisamy, Yangchun Luo, Wei-Lung Hung, A. Zhai, Pen-
Chung Yew and Tin-Fook Ngai, "Efficiency of thread-level
speculation in SMT and CMP architectures - performance, power and

thermal perspective,"in 2008 IEEE International Conference on
Computer Design, Lake Tahoe, CA, 2008, pp. 286-293, DOI:
10.1109/ICCD.2008.4751875.

[3] J. D. Collins et al., "Speculative precomputation: long-range

prefetching of delinquent loads," in Proc. 28th Annual Intern atio nal
Symposium on Computer Architecture, Gothenburg, Sweden, 2 001 ,
pp. 14-25, DOI: 10.1109/ISCA.2001.937427.

[4] D. Los, I. Petushkov, “Exploring Fine-grained Task Parallelism o n

Simultaneous Multithreading Cores,” International Journal o f Open
Information Technologies, vol. 12, no. 10, pp. 145-151, 2024

[5] T. Kadosh et al., “OMPar: Automatic Parallelization with AI-Driv en
Source-to-Source Compilation”, arXiv: 2409.14771, 2024

[6] Cursor: The AI Code Editor, 2025. [Online]. Available:
https://cursor.com/

[7] T. Grosser et al. “Polly - Performing Polyhedral Optimization s o n a

Low-Level Intermediate Representation.” Parallel Process. Lett, vol.
22, 2012

[8] M.-W. Benabderrahmane et al, “The Polyhedral Model Is More
Widely Applicable Than You Think”, Lecture Notes in Computer

Science, vol. 6011, pp. 283-303, DOI: 10.1007/978 -3 -6 42-119 70-
5_16.

[9] M. Norouzi et al, “Automatic construct selection and variable
classification in OpenMP,” in Proc. of the ACM International
Conference on Supercomputing, Phoenix, Arizona, 2019, pp. 330-341

[10] A. Jimboreal et al. “Adapting the polyhedral model as a f r am ewo rk
for efficient speculative parallelization,” in Proc. o f th e 1 7

t h
 ACM

SIGPLAN Symposium on Principles and Practice of Parallel
Programming, New Orleans, Louisiana, USA, 2012, pp. 295-296

[11] Amini, Mehdi et al. “Par4All: From Convex Array Regions to
Heterogeneous Computing.” International Conference on High
Performance Embedded Architectures and Compilers, 2012

[12] U. Bondhugula et.al, “Automatic Transformations for

Communication-Minimized Parallelization and Locality Optimization
in the Polyhedral Model”, Lecture Notes in Computer Science , v ol.
4959, pp. 132-146.

[13] Daniel Nichols, Joshua H Davis, Zhaojun Xie, Arjun Rajaram , an d

Abhinav Bhatele. 2024. Can Large Language Models Write Parallel
Code? arXiv preprint arXiv:2401.12554 (2024).

[14] Tal Kadosh, Niranjan Hasabnis, Vy A Vo, Nadav Schn eid er , Neva

Krien, Mihai Capota, Abdul Wasay, Nesreen Ahmed, Ted Willk e,
Guy Tamir, et al. 2023. MonoCoder: Domain-Specific Code
Language Model for HPC Codes and Tasks. arXiv preprint
arXiv:2312.13322 (2023).

[15] Le Chen, Arijit Bhattacharjee, Nesreen Ahmed, Niranjan Has ab nis,
Gal Oren, Vy Vo, and Ali Jannesari. 2024. OMPGPT: A Generative
Pre-trained Transformer Model for OpenMP. arXiv:2401.16445
[cs.SE]

[16] Miguel Romero Rosas, Miguel Torres Sanchez, and Rudolf
Eigenmann. 2024. Should AI Optimize Your Code? A Comp arative
Study of Current Large Language Models Versus Classical
Optimizing Compilers. arXiv preprint arXiv:2406.12146 (2024).

[17] Tal Kadosh, Nadav Schneider, Niranjan Hasabnis, Timothy Mattson,
Yuval Pinter, and Gal Oren. 2023. Advising OpenMP Parallelization
via a Graph-Based Approach with Transformers. arXiv preprint
arXiv:2305.11999 (2023).

[18] Le Chen, Quazi Ishtiaque Mahmud, Hung Phan, Nesreen Ahmed, and
Ali Jannesari. 2023. Learning to Parallelize with OpenMP by
Augmented Heterogeneous AST Representation. Proceedings of

Machine Learning and Systems 5 (2023).
[19] S. Saini, A. Naraikin, R. Biswas, D. Barkai and T. Sandstrom, "Early

performance evaluation of a "Nehalem" cluster using scientif ic and
engineering applications," in Proc. of the Conference on High

Performance Computing Networking, Storage and Analysis, Portland,
OR, USA, 2009, pp. 1-12, DOI: 10.1145/1654059.1654084.

[20] E. Athanasaki, N. Anastopoulos, K. Kourtis, N. Koziris, “Explo rin g
the performance limits of simultaneous multithreading fo r m em ory

intensive applications,” The Journal of Supercomputing, vol. 44, p p.
64-97, 2008, DOI: 10.1007/s11227-007-0149-x

[21] R. Schöne, D. Hackenberg, and D. Molka, “Simultaneous
multithreading on x86_64 systems: an energy efficiency evaluation,”

in Proc. of the 4th Workshop on Power-Aware Computing and
Systems, Cascais, Portugal, 2011, Article 10, DOI:
10.1145/2039252.2039262.

[22] M. Bakhshalipour, M. Likhachev, and P. B. Gibbons, "RTRBench: A
Benchmark Suite for Real-Time Robotics," in 2022 IEEE
International Symposium on Performance Analysis o f S ystems a n d
Software (ISPASS), Singapore, Singapore, 2022, pp. 175-18 6, DOI:

10.1109/ISPASS55109.2022.00024.

