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Abstract—Latency-critical applications tend to show low 

utilization of functional units due to frequent cache misses and 
mispredictions during speculative execution in high-

performance superscalar processors. However, due to 

significant impact on single-thread performance, Simultaneous 

Multithreading (SMT) technology is rarely used with heavy 

threads of latency-critical applications. In this paper, we 
explore utilization of SMT technology to support fine-grained 

parallelization of latency-critical applications. Following the 

advancements in the development of Large Language Models 

(LLMs), we introduce Aira, an AI-powered Parallelization 

Adviser. To implement Aira, we extend AI Coding Agent in 
Cursor IDE with additional tools connected through Model 

Context Protocol, enabling end-to-end AI Agent for 

parallelization.  Additional connected tools enable LLM-guided 

hotspot detection, collection of dynamic dependencies with 

Dynamic Binary Instrumentation, SMT-aware performance 
simulation to estimate performance gains. We apply Aira with 

Relic parallel framework for fine-grained task parallelism on 

SMT cores to parallelize latency-critical benchmarks 

representing real-world applications used in industry. We show 

17% geomean performance gain from parallelization of 
latency-critical benchmarks using Aira with Relic framework. 

 

Keywords—parallel computing, advisor, AI-powered, LLM, 
parallelization, binary optimization, profile-guided 

 

I. INTRODUCTION 

Latency-critical applications require strict adherence to 

timing constraints for response times. Failure to meet these 

constraints may significantly degrade the user experience, 

cause system failure, or pose a serious safety threat. 

Latency-critical applications span over a wide range of 

domains, such as finance, cloud computing, healthcare, 

robotics, autonomous systems, aerospace, online gaming, 

and telecommunications. Modern latency-critical services 

process more than a billion requests each day. 

 To meet new demands, major technology companies 

allocate considerable time and resources to enhance the 

performance, power efficiency, and effectiveness of latency-

critical applications. Modern high-performance processors 

utilize Out-of-Order execution and superscalar architecture 

to exploit Instruction-Level Parallelism (ILP) and boost 

performance. However, even with all the resources invested 
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in performance optimization, latency-critical applications 

due to frequent cache misses or branch mispredictions could  

have a low ILP, hence, underutilizing available functional 

units. 

 Simultaneous Multithreading (SMT) [1] technology 

allows a single physical processor core to execute 

instructions from multiple threads in the same cycle. SMT 

technology improves the utilization of functional units by 

increasing ILP and improves the overall system throughput 

via Thread-Level Parallelism. 

 However, Single-Thread (ST) performance might 

suffer because of SMT technology. ST performance 

degradation presents a significant challenge to using SMT 

technology with latency-critical applications. 

 Naturally, thread-level parallelism could be exploited 

in latency-critical applications and the generated parallel 

tasks could be scheduled to logical threads of an SMT core. 

To address challenges of parallelization of general-purpose 

applications, previous works also explored Thread-Level 

Speculation on SMT cores [2]. Helper Threading [3] is 

another technique that could use SMT technology to 

improve the performance of heavy threads in a latency-

critical application. 

 Wide-spread use of thread-level speculation and helper 

threading to improve ST performance of heavy threads is 

challenging. Thread-Level Speculation requires the support 

for transactional memory, while an efficient helper 

threading on SMT cores usually requires hardware support. 

 Previously, in [4], a  specialized parallel programming 

framework, called Relic, was introduced. It enables 

extremely fine-grained task parallelism on SMT cores. 

 In this work, we explore methods to accelerate latency-

critical applications by parallelizing fine-grained kernels 

within them using Relic framework. There is a large scope 

of work on discovery of parallelism in sequential progra ms. 

Recently, Large Language Models (LLMs) emerged as the 

promising approach for identification of potential parallel 

regions and restructuring of the code. Several works 

demonstrate that LLM-based solutions could significantly 

outperform traditional methods [5].  

However, previous works showed limitations of general-

purpose LLMs, such as GPT models, to produce parallel 

code and parallelize sequential code. That’s why in most of 

the previous works, specialized LLMs are trained and used 

for the tasks involving parallel programming and 

parallelization of programs. Training of these specialized 

models still require significant computational resources.  

Instead of relying on specialized models, we use state-of-
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the-art general-purpose models, but take a different 

approach to improving their efficiency in parallelizing 

sequential programs. We integrate our solution directly to a 

popular AI Code Editor, called Cursor [6], and use it with its 

AI Coding Agent, connecting additional tools to provide 

additional context to the model 

In this paper, we make the following main contributions: 

1) We introduce Aira: AI-powered Parallelization Adviser. 

It’s based on the AI Coding Agent used in Cursor IDE 

with Claude Sonnet 4 model in its core. We develop 

and connect additional tools to the agent through Model 

Context Protocol (MCP). Additional functionality that 

we add include: sample-based profile collection to 

detect hotspot functions, Dynamic Binary 

Instrumentation (DBI) tool to collect dynamic 

information, binary analysis tool to analyze static 

dependencies and collected execution traces 

2) We introduce a specification file describing the end-to-

end flow of Aira to the LLM from hotspot detection to 

parallel restructuring of code. The specification file is 

loaded into the context of the model through MCP. The 

optimization flow of Aira could be enabled with a 

simple prompt message: “Parallelize this program with 

Aira”. 

3) We rely on the LLM to annotate promising code 

regions after hotspot detection and restructure potential 

parallel code regions with Relic framework at the end. 

The specification file features examples of the usage of 

Relic framework to provide the model with the context. 

This allows to do parallel restructuring of code using a 

custom parallel programming framework. 

4) We develop a binary analysis tool based on Binary 

Optimization Layout Tool (BOLT) to analyze static 

dependencies and dynamic dependencies with collected  

execution traces in the annotated code regions 

5) We extend Sniper simulator to analyze a potential 

benefit from running the tasks on an SMT core based on 

the collected execution traces 

6) With Aira, we automatically parallelize latency-critical 

applications using Relic framework. 

II. RELATED WORK 

There is a wide range of existing parallelization tools 

coming from decades of research. 

 LLVM Polly [7] is the classical tool for parallelization of 

loops and improving affinity integrated into LLVM. It uses 

an abstract polyhedral model to analyze memory access 

patterns. The polyhedral model works best for regular 

memory accesses that represent many cases in scientific 

computing workloads. GCC has its own framework for 

polyhedral analysis called Graphite [8]. 

 DiscoPop [9] is another tool of semi-automatic program 

parallelization. DiscoPoP uses LLVM IR-level 

instrumentation to assemble a memory access profile from 

all instructions. The runtime library allows you to monitor 

memory accesses during execution. In order to reduce 

delays caused by profile collection, memory accesses are 

written to a hash table, and instructions with repea ted 

private accesses are skipped. 

 Apollo [10] tool allows to do automatic, dynamic and 

speculative parallelization. Apollo features 2 main 

components. The first component is the set of extensions fo r 

Clang compiler. The second component is a runtime system 

that can do instrumentation to collect information about 

dynamic memory accesses. 

 Par4All [11] is an automatic parallelizing and optimizing 

compiler for C and Fortran programs. It is mostly targeted 

towards loop parallelization. 

 PLUTO [12] uses polyhedral model to find coarse-

grained parallelism in the big code sections, such as nested 

loops. 

 Other tools for automatic and semi-automatic 

parallelization include Intel Adviser XE, ParaMeter, Prism, 

SLX Tool Suite.  

 Recently emerged AI-Driven tools include OMPar [5], 

that uses two models: OMPify and MonoCoder-OMP. The 

first one is used to access loop parallelization potential and 

the second one is used to generate precise OpenMP 

pragmas. Other AI-driven tools for generating OpenMP 

pragmas include [13]-[18]. 

III. ENVIRONMENT 

We conduct all experiments on a Linux system with Ubuntu 

24.04. The system has Intel Core i7-12700 Alder Lake 

processor featuring 8 performance cores and 4 efficient 

cores. For all experiments on SMT technology, we use 

performance cores with Hyper-Threading technology. Linux 

kernel version is 6.14 and glibc is 2.39. 

 All benchmarks and parallel programming frameworks 

are compiled with Clang compiler from LLVM 20.1.8 with -

O3 optimization option. We use libc++ from LLVM 20.1.8 

as the implementa tion of C++ standard library for all 

experiments. 

 We use Cursor IDE v1.3.9 that is based on VS Code 

1.99.3. 

IV. ANALYSIS OF THE SMT TECHNOLOGY EFFICIENCY FOR 

FINE-GRAINED KERNELS 

Many previous works show that performance benefit from 

SMT technology strongly depends on an application 

[19][20][21]. In general, a  pair of tasks running on logical 

threads of an SMT core should complement each other and 

avoid competing for the same functional units. Compute-

bound kernels fully utilizing available functional units 

would not see any benefit from SMT technology or would 

see a negative impact. Memory-bound tasks are more likely 

to see performance benefit on an SMT core, however, cache 

contention between the tasks could lead to degradation of 

performance. 

 While there have been many works studying the 

efficiency of SMT technology, they mostly focused on 

coarse-grained tasks. To understand which tasks should be 

selected by Aira adviser and study the underlying effects, 

we analyze sets of compute-bound and memory-bound fine-

grained kernels running on SMT cores. The kernels are 

parallelized with Relic [4] framework and LLVM OpenMP. 

For both Relic and LLVM OpenMP, only 2 threads are 

used. The threads are scheduled to either a single physical 

core with Hyper-Threading or to 2 distinct physical cores. 

These two scenarios are referred to with suffixes SMT or 

SMP (which stands for Symmetric Multiprocessing), 

respectively. We vary granularities of the kernels using the 
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corresponding parameters. 

 In Fig. 1, for example, performance ga ins from 

parallelization with Relic framework and LLVM OpenMP 

are shown for the motion update in Particle Filter 

Localization (PFL) benchmark from Real-Time Robotics 

Benchmark (RTRBench) [22]. This is a compute-bound 

benchmark with floating-point operations. 

   

 

Figure 1. Performance gains from parallelizing motion 

update in PFL benchmark with different granularities 

 For motion update in PFL benchmark, there is no 

significant performance gain from simultaneous 

multithreading. For 1000 particles, performance gains are 

5.1% and 2.7% for parallelization on an SMT core with 

Relic framework and LLVM OpenMP, respectively. 

 For small numbers of particles, there is performance 

degradation from parallelization due to task scheduling 

overheads. However, since task scheduling overhead is 

smaller for parallelization on an SMT core, for both Relic 

and LLVM OpenMP, SMT-based parallelization shows 

higher performance than parallelization on different physical 

cores. The performance gains from SMT-based 

parallelization for small granularities are still negative. As 

expected, Relic framework shows better performance than 

LLVM OpenMP on small granularities. 

 The interesting observation from Fig. 1 is that for a very 

short range of granularities, SMT-based parallelization with 

Relic framework shows higher positive performance gain 

than SMP-based parallelization with LLVM OpenMP. 

 In Fig. 2, performance gains from parallelization with 

Relic framework and OpenMP are shown for the CC 

benchmark introduced in [4]. It’s a fine-grained memory-

bound graph processing benchmark.  

 

Figure 2. Performance gains from parallelizing CC 

benchmark with different granularities 

 For very small granularities, there is still performance 

degradation for parallelization due to not low enough task 

scheduling overheads for the memory-bound CC 

benchmark. However, there is a range of granularities, for 

which performance speedup from parallelization was ma de 

possible by the introduction of Relic framework. This is the 

range where SMT-based parallelization with Relic 

framework shows positive performance gains and 

outperforms SMP-based parallelization. In the same range 

of granularities, both SMT-based and SMP-based versions 

of parallelization with LLVM OpenMP result in 

performance drop due to high task scheduling overheads. 

Below this range of granularities, all versions of 

parallelization result in performance degradation. Above this 

range of granularities, it’s more beneficial to schedule 

parallel tasks to different physical cores. These range of 

granularities represent the primary target of fine-grained 

parallelization on SMT cores. 

 Hence, as expected, to effectively parallelize fine-grained 

kernels of latency-critical application, Aira adviser should 

be able to characterize the kernels and estimate their 

granularity. 

V. AIRA: AI-POWERED PARALLELIZATION ADVISER 

Aira is based on the AI Coding Agent used in Cursor IDE. 

We choose Claude Sonnet 4 model to power the agent, since 

its outstanding performance on coding benchmarks. 

 We develop a specification in Markdown document for 

the end-to-end flow of applying Aira. A special MCP tool 

loads this document into the context of the model when a 

user inputs a prompt asking for parallelization with Aira. 

 The specification file starts from collecting sampled 

profiles with Linux perf tool with enabled LBR feature. We 

develop a wrapper tool to collect sampled profiles, parse 

them and provide to the LLM in JSON format representing 

the found hot functions. 

 Then the model is instructed in the specification file to 

annotate promising for parallelization code regions inside of 

hotspot functions. The mapping of each annotated region  to  

the source code line positions is saved in the additional file. 

 After adding instrumentation, execution traces featuring 

load and store memory accesses with executed basic blocks 

are collected with DynamoRIO. 

 A program with annotations is passed to a binary analysis 

tool. We developed this tool ba sed on Binary Optimization 

Layout Tool (BOLT), that is used in LLVM. BOLT is 

mainly used for code layout optimization; however, it 

provides an extensive framework for binary analysis and 

optimization going beyond optimization for code layout. 

  For each annotated code region, we check static 

dependencies using BOLT, as well as dynamic 

dependencies (memory accesses) using collected execution 

traces. The binary analysis tool can work with binaries 

optimized with -O3 option since it only looks for the 

annotation marks. However, the binary analysis tool could 

also report found memory dependencies mapping them to 

the original variables in the source code through the llvm -

symbolizer tool. 

 If there are no conflicts detected during the binary 

analysis, potential performance benefit is estimate based on 

trace-based Sniper simulator. Sniper simulator, based on 

Sniper 7.4 was extended to more accurately model 

allocation of issue ports and several functional fixes were 
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applied to the SMT model of Sniper. A simplified OOO 

model is used in Sniper instead of the interval model for 

more accuracy. If there are no conflicts for the code region 

and potential performance benefit is reported with the 

Sniper performance simulator, the output is generated for 

the LLM. 

 The next command in the specification files asks for 

parallel restructuring of the found regions with Relic parallel 

programming framework. 

 Since the LLM is not aware of the interface of Relic 

framework, we include 20 simple examples of applying 

Relic framework to va rious parallelization cases. It shows 

possibility to apply Aira to custom frameworks and go 

beyond OpenMP parallel programming model.   

VI. BENCHMARKS 

We have chosen 10 benchmarks that represent a wide range 

of real-world latency-critical applications from different 

domains, such as cybersecurity, high-frequency trading 

(HFT), robotics, social media, recommendation systems, 

and aerospace. All of these benchmarks use algorithms 

based on linked data structures and may show high cache 

miss rates. 

A. Geo-Spatial Database System (GeoSpatial) 

This benchmark implements a latency-critical geo-spatial 

key-value query engine that simulates the critical path of a 

geo-spatial database system. Three sequential stages 

comprise the query processing system. First, spatial range 

queries are performed using a k-dimensional (KD-tree) data 

structure to identify objects within rectangular regions 

through iterative tree traversal. Second, the metadata 

associated with spatially identified objects is retrieved using 

a binary search tree. Third, for each query, an aggregated 

value is computed after processing linked lists with per-

object metrics. 

In the database, we keep 2048 geo-spatial objects, 

distributed across a 1000 x 1000 coordinate space. We 

perform 1000 warmup iterations and 105 measurement 

iterations, where each iteration processes 15 concurrent 

rectangular range queries. Rectangular queries span 50 x 50 

coordinate units. We limit the maximum number of 

identified objects per query to 32. 

B. Volume-Weighted Average Price Engine (VWAP) 

The volume-weighted average price engine benchmark 

implements a latency-critical Volume-Weighted Average 

Price (VWAP) computation engine designed for high-

frequency trading market data analytics. The processing 

pipeline looks like the following. First, the incoming trade 

prices are mapped to discrete order book levels. Skip-list 

data structure is used to perform these search operations 

efficiently. Then, in the volume aggregation stage, linked-

list traversal is performed to aggregate outstanding volume 

at each identified price level. Finally, volume-weighted 

average prices are computed over a sliding window using 

circular ring buffer traversal. 

 Price levels show uniform distribution across $100.00-

$100.99 range with a 1-cent minimum price increment. The 

skip-list has four hierarchical levels. The sliding window 

size is set to 32 ticks, representing approximately 32-64ms 

of market activity at typical message rates. We perform 

1000 warmup iterations and 105 measurement iterations, 

where 30 concurrent trade messages are processed on each 

iteration. 

C. Obstacle Detection System (LIDAR) 

This benchmark implements a real-time obstacle detection 

and collision system designed for autonomous vehicle safety 

applications. 3D point cloud data from LIDAR sensors is 

processed to determine minimum obstacle distances along 

planned vehicle trajectories. The system constructs a 

balanced KD-tree data structure from the point cloud 

observations to enable efficient processing of spatial 

queries. To resolve a safe trajectory, nearest-neighboring 

queries are performed. 

Point cloud observations are distributed within a 60 x 60 x 

60 meter cubic sensing volume, representing a typical 

scenario in an urban area. We use 1000 obstacles that are 

uniformly distributed throughout the sensing volume, 

simulating pedestrians, vehicles, and static infrastructure. 

The trajectory is represented using 100 discrete waypoints 

with 0.2-meter spatial resolution, resulting in a forward-

looking trajectory of up to 20 meters. We use 1000 warmup 

iterations and 105 measured iterations. 

D. Social Media Feed Generation System (Timeline) 

The Timeline benchmark implements a high-performance 

social media feed generation microservice designed to 

emulate production-scale content recommendation systems 

deployed by major platforms such as Twitter and LinkedIn. 

Potential content posts are collected from followed accounts 

after traversing the viewer's social graph. The collected 

potential content posts are evaluated based on engagement 

metrics and temporal decay functions. 

For the Timeline benchmark, we use 1000 active accounts 

in the social graph. Each user follows from 64 to 192 other 

accounts and maintains from 16 to 80 posts in their timeline. 

Each post could receive from 5 to 25 reactions. The number 

of posts and followed accounts for each user, as well as the 

number of reactions for each post, is determined based on a 

uniform random distribution. Post timestamps are 

distributed across the previous 24-hour period to model 

temporal content distribution. The maximum number of 

content posts from each user is limited to 8. 

E. Random Forest (RF) 

This benchmark implements a Random Forest ensemble 

consisting of multiple binary decision trees, each 

represented as a linked data structure with internal nodes 

containing feature indices, thresholds, and pointers to child 

nodes. 

 The number of decision trees in the ensemble is equal to 

256. Each decision tree has a maximum depth of 5. Each 

input feature vector has 32 features. We use 1000 warmup 

iterations and 105 measurement iterations. 

F. Graph Neural Network 1-Hop Embedding (1-Hop) 

For this benchmark, the focus is on evaluating the 

performance of graph neural network inference systems. 

The computation of 1-Hop embeddings is simulated in this 

benchmark, a core operation in applications such as social 

network analysis and recommendation systems. 

 The graph used in this benchmark has 200000 nodes with 

an average degree of 256. There are 64 features per node. 

For consistency, on each iteration, the embeddings are 
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computed for a node with index 0. The number of iterations 

is 105.  

G. Limit Order Book (LOB) 

The LOB benchmark evaluates the performance of high-

frequency trading (HFT) matching engines that process limit 

order book updates in real-time financial markets. This 

benchmark simulates a multi-symbol order book 

management system where each symbol maintains its own 

price-level structure, representing the core computational 

kernel of latency-critical trading infrastructure. The 

benchmark implements a limit order book (LOB) data 

structure that maintains price levels in ascending order, with 

each level containing a linked list of orders. 

 For the LOB benchmark, we use 256 independent trading 

symbols. We set the number of order updates per symbol per 

iteration to 500. The total number of updates is equal to 

128000. Prices are distributed uniformly in the range from 

100$ to 101$. We use 100 warmup iterations and 1000 

measurement iterations. 

H. IP Address Geolocation System (GeoIP) 

The GeoIP benchmark implements an ultra -low-latency IP 

address geolocation system commonly deployed in content 

delivery networks, firewalls, and edge computing 

infrastructure. This benchmark features a binary trie data 

structure optimized for IPv4 address lookup, where each 

node represents a bit position in the 32-bit IP address. 

 On each iteration, we process 106 IP addresses. We use 

100 warmup iterations and 1000 measurement iterations. 

I. Fraud Detection (Fraud) 

This benchmark evaluates the performance of graph-based 

anomaly detection systems that identify complex network 

motifs in large-scale transaction or interaction graphs. This 

benchmark implements a 5-vertex fan-in motif detection 

algorithm that identifies suspicious patterns where multiple 

entities converge on a single target, representing the 

computational kernel of real-time fraud detection and 

network security systems. 

 For this benchmark, we use a graph with 105 vertices and 

3 ·105 random background edges. We use 100 warmup 

iterations and 1000 measurement iterations. In each 

iteration, 1000 edges are tested for pattern completion. 

J. 3D Collision Detection System (BVH) 

The BVH benchmark evaluates the performance of 3D 

collision detection systems used in autonomous vehicles, 

robotics, and aerospace applications. This benchmark 

implements a Bounding Volume Hierarchy (BVH)-based 

collision detection algorithm that identifies potential 

collisions between a predicted trajectory and a point cloud 

of obstacles, representing the computational kernel of real-

time safety systems. 

 For the BVH benchmark, we use 2 ·105 obstacle points in 

3D space. We evaluate 10000 trajectory points. For the 

environment, we use a 1 km cube. Obstacles are distributed 

uniformly across 3D space. We use 100 warmup iterations 

and 1000 measurement iterations. 

VII. RESULTS 

 We apply an end-to-end parallelization pipeline of Aira to 

optimize latency-critical benchmark applications. 7 out of 

10 latency-critical benchmarks were successfully 

automatically parallelized with Relic framework after using 

Aira. In Fig. 3, performance gains are shown for each 

benchmark with the positive performance impact. Geomea n  

performance gain on the benchmarks with positive 

performance impact is 25.2%.  

 

 

Figure 3. Performance gain on latency-critical benchmarks 

after applying Aira with Relic framework 

3 out of 10 benchmarks could not be successfully 

parallelized using Aira with Relic framework. Performance 

degradation results for each benchmark are shown in Fig. 4. 

Parallelization of Fraud detection benchmark was not found  

to be beneficial during performance simulation of the SMT 

Core in Sniper simulator. Hence, Relic framework was not 

applied and there is no change in the performance of the 

Fraud benchmark. However, for 1-Hop and BVH 

benchmarks were not flagged during the check in Sniper 

simulator, however, the parallelized kernels were too fine-

grained to apply Relic framework. Performance degradation  

in the BVH benchmark is 61%. Negative performance 

impact in the 1-Hop benchmark is 9%. Real-world latency-

critical application are extensively profiled; hence, 

performance degradations are usually discovered and 

features with negative impacts are discarded. Without 

negative outliers, the geomean performance gain from 

applying Aira with Relic framework is 17%. 

 

 

Figure 4. Performance degradation on some of the latency-

critical benchmarks after applying Aira  with Relic 

framework 
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VIII. CONCLUSION 

We introduced Aira, an AI-powered parallelization adviser. 

Instead of relying on the specialized LLMs, we used as the 

foundation AI Coding Agent used in Cursor IDE that is 

powered by Claude Sonnet 4 model. We developed and 

integrated additional tools via MCP to do hotspot detection, 

collect and analyze dynamic dependencies. We introduced a  

specification Markdown file describing the whole 

optimization flow of Aira so that Aira could be easily used 

without the need to input complex prompts. 

 We analyzed efficiency of SMT technology for fine-

grained kernels and extended Sniper performance simulator 

to estimate performance gain from the parallelization on 

SMT cores based on the collected execution traces and 

discard parallelization cases with negative performance 

impact. 

 We applied Aira with Relic framework to 10 latency-

critical benchmarks representing real-world industry 

applications and use cases and achieved average 

performance gain of 17%. 
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