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Abstract—The aim of this article is to explore the capabilities 

of modern neural networks in analyzing cytological whole slide 

images in svs format in accordance with the Bethesda 

categorization system. The article presents the results of the 

proposed neural network models for solving tasks of automatic 

segmentation and classification of both various types of 

individual cells and their clusters. For the diagnosis of thyroid 

cancer using computer vision, the following cell types are 

identified: Hurthle cells, cells with pseudoinclusions, C-cells, 

and clusters of cells forming papillary structures, shapeless 

structures with ordered and unordered cell arrangements. The 

proposed models have demonstrated their effectiveness in 

solving tasks related to the intelligent analysis of both whole-

slide cytological images and tiled image segmentation. The 

results obtained for the segmentation of individual cells are as 

follows: mean Dice coefficient (DC) = 90.9% for 

pseudoinclusions, DC = 86.2% for Hurthle cells, DC = 90.2% 

for C-cells. For cell cluster segmentation, the mean Intersection 

over Union (IoU) is 84%, and DC is 91%. The classification 

accuracy of cell clusters into three classes is 77.9%. 

Keywords – computer vision, deep learning, whole-slide image, 

thyroid cytology 

I. INTRODUCTION  

Processing large images is a complex task compared to 

manipulating images of conventional sizes, as operations 

such as analysis, transmission, display, and others require 

significantly more time. This is particularly evident in fields 

where working with digitized images occurs in real time, 

such as medical diagnostics using instrumental methods. In 

such cases, it is often necessary to handle images or image 

series of varying volumes. Working with large images is 

especially relevant in cytological and histological analysis, 

where the size of a single file in svs format can reach several 

gigabytes. 

Thyroid nodules (TN), being an extremely common 

medical issue, require further examination upon detection to 

rule out malignancy [1], [2]. Ultrasound (US) is the primary 

stage of diagnosis, as it provides initial data on the risk of 

malignancy and determines the indications for the 

subsequent step, i.e. fine-needle aspiration (FNA), followed 

by cytological examination [1], [3], [4]. 

 

Cytopathology reports should be presented according to 

the Bethesda System for Reporting Thyroid Cytopathology 

(TBSRTC) system, which stratifies specimens into six 

diagnostic categories, each corresponding to a specific risk 

of malignancy [5]. Although the currently accepted 

diagnostic algorithm has proven to be an effective method 

for clarifying the nature of TN, it is important to note that 

US and FNA are operator-dependent methods. The quality 

and speed of these examinations are highly influenced by 

the experience and qualifications of the specialist 

performing them. This also makes both examinations labor-

intensive, time-consuming, and, in some cases, prone to 

significant discrepancies when the same lesions are 

evaluated by different experts. While these issues are 

partially mitigated through the development of standardized 

assessment and reporting algorithms by professional 

communities, integrating software solutions utilizing 

computer vision for intelligent analysis at these diagnostic 

stages could help accelerate diagnostics and improve 

accuracy. 

Such a software product extracts informative features and 

provides the physician with information about significant 

areas of the image, indicating the predicted disease class and 

forming a “second opinion” based on diagnostic models. 

 

This study is dedicated to modeling automated intelligent 

analysis of cytological examination images. The number of 

publications in this field is significantly lower compared to 

cardiology, pulmonology, or dermatology, and they are 

generally unsystematic, addressing only individual features 

[6]-[10]. This is due to several challenges. Firstly, disease 

classification requires identifying more than ten informative 

objects at the cellular level, which is significantly more 

complex than analyzing a single thyroid nodule in 

ultrasound imaging [11]. Secondly, working with large 

images ranging from 3 to 7 GB greatly complicates all data 

processing operations. 

II. LITERATURE REVIEW 

Today, various software tools are available that allow 

users, including those without experience in intelligent 

image processing, to work with large whole-slide medical 

images. Some of the most popular ones include QuPath 

[12]-[15]. These systems provide functions for viewing and 

annotating images (including whole-slide images) using 

built-in machine learning models. They enable cell detection 

and classification, quantitative analysis, pixel classification, 

integration of a limited set of models, and the creation of 

custom scripts. Additionally, each system offers unique 

extra features. 

 

Nevertheless, all the listed tools, as well as others not 

mentioned here, are designed to address typical tasks 

common to most histopathological images. However, the 

capabilities provided by these tools are insufficient for a 

comprehensive diagnosis of thyroid cytology using 

computer vision methods. Existing systems do not support 

the automation of thyroid cytological image classification 

according to the Bethesda system while accounting for the 
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identification of multiple informative features within the 

images. 

III. MATERIALS AND METHODS 

The objective of this study can be formulated as follows: 

“The input data for the research includes digitized thyroid 

cytology images (whole slide images), deep neural network 

architectures, machine learning models, and specialized 

software for working with visual data. The task is to conduct 

research aimed at developing a methodology for the 

automated extraction of significant features from thyroid 

cytology images and categorizing these images using 

computer vision in accordance with the international 

Bethesda criteria”. 

3.1. Data preparation 

Preprocessing Features 

The computer processing of ultrasound and cytological 

images differs significantly [11], [16], [17]. 

Ultrasound images and cine loops, ranging in size from 

several tens of kilobytes to megabytes, are processed using 

standard methods similar to conventional images. Cine 

loops containing several dozen frames are split into 

individual frames, followed by preprocessing, dataset 

formation in a format suitable for neural network training, 

and subsequently, network training and testing. 

For digitizing cytological slides, whose image sizes can 

reach several gigabytes in svs format, the Whole Slide 

Imaging (WSI) technology is used. This method enables the 

acquisition of high-resolution images with exceptional 

clarity, which can be viewed at different magnification 

levels. The dimensions of such images can reach tens of 

thousands of pixels in both length and width, making their 

processing fundamentally different from conventional image 

processing. Whole-slide image analysis requires substantial 

time and computational resources. Additionally, to improve 

result accuracy, careful image preprocessing is essential 

[18]. 

 

Figure 1 shows an example of a thyroid cytology image at 

low magnification, while Figure 2 presents a fragment of the 

same image at high magnification. 

 

Fig. 1 – Example of a thyroid cytology image at low magnification 

 

Fig. 2 – Example of a fragment of a cytology image at high magnification 

Working with WSI cytology images can be done in two 

ways: by using specialized tools to process the entire image 

as a whole or by dividing it into smaller fragments (tiles). 

Before splitting a whole-slide image into tiles, the 

magnification level must be determined. The higher the 

magnification, the longer the process takes and the more 

tiles are generated. The obtained tiles undergo preprocessing 

and are then analyzed by neural network models, which also 

requires significant time. To speed up processing, a lower 

magnification level can be chosen, but this may reduce 

prediction accuracy. 

Working with small tiles is similar to processing 

ultrasound images. The preprocessing of tiles obtained from 

the original WSI aims to improve algorithm accuracy and 

includes removing irrelevant areas, resizing, color 

thresholding, normalization, and other methods, including 

image augmentation. After preprocessing, tiles that do not 

contain areas of interest are filtered out, which accelerates 

intelligent analysis. 

Processing WSI without splitting it into tiles is used when 

the analysis focuses not on individual cells but on their 

clusters, for example, for counting these clusters. This 

approach is implemented using tools such as QuPath. In this 

case, preprocessing includes selecting the image type and 

configuring stain vector assessment parameters. 

These differences highlight that processing small 

ultrasound images and large thyroid cytology images differs 

significantly. 

When working with QuPath, preprocessing involved 

selecting the image type (Brightfield H&E) and configuring 

stain vectors to enhance analysis quality. During the WSI 

tiling process, some tiles were excluded due to the absence 

of significant areas, allowing data volume reduction without 

loss of informativeness. Preprocessing of each tile included 

resizing, normalization, and preparation for subsequent 

analysis steps. 

For augmenting training sets of tiles, proven methods were 

used, which had previously demonstrated high efficiency in 

experiments on training models for thyroid ultrasound image 

segmentation and classification. These approaches improved 

model quality and their generalization ability.  

Original Dataset and Annotation 

The original dataset included digitized images of thyroid 

cytology studies and class labels. A detailed description of 

the dataset used in this study is presented in [19], which this 

article continues. 

Ethical Review. The study protocol was reviewed and 

approved by the local ethics committee of the National 

Medical Research Center for Endocrinology of the Ministry 

of Health of Russia (protocol No. 14 dated 25.07.2023). 

Based on a list of objects for detection agreed upon with a 

cytologist, image annotation was performed. Due to the 

large size of the original whole-slide images, manual 

annotation of all objects was time-consuming, so the 

functional capabilities of existing tools were utilized. 

Among the objects requiring detection were clusters of 

cells of various categories. On thyroid cytology images, the 

number of such clusters can reach several hundred, 

necessitating their counting. Therefore, QuPath’s 

capabilities were initially tested for detecting clusters on the 

original WSI images, with the experimental results detailed 
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in [19]. Based on the outcomes of QuPath’s methods for 

detecting cell clusters, the best-performing method was 

chosen for annotation. After training and applying the pixel 

classifier, identified regions were transformed into 

individual objects with subsequent filtering by area. To 

export ROIs in PNG format along with corresponding 

masks, a Groovy script was developed using the built-in 

editor. The resulting image tiles were then manually 

categorized (with some being discarded due to irrelevance) 

and sent for expert review, where the annotations were 

adjusted if necessary by relocating images to the correct 

folders. 

To accelerate the annotation process and improve its 

accuracy, annotation functions from the CVAT tool [20] 

were used for creating masks for high-magnification image 

tiles. A semi-automatic annotation approach was applied 

using the pre-trained SAM model [21]: clicking on an area 

of interest generated predictions, which could be manually 

adjusted if needed. 

QuPath was also used for annotating individual cells. 

Initially, several images with different cell types were 

manually annotated. The resulting images, along with their 

masks, were divided into tiles, exported, and organized into 

folders before being validated by a cytologist. 

 

At the initial stage, traditional computer vision algorithms 

utilizing the OpenCV library were employed. Image 

preprocessing included histogram equalization and Gaussian 

blur. Then, thresholding was applied to separate cells from 

the background, followed by contour detection on the 

resulting masks. However, due to high data noise and color 

variability in the images, the algorithm's accuracy was low. 

Further experiments were conducted using QuPath tools, 

where built-in algorithms such as Random Forest, Linear 

Regression, K-Means, and MLP were tested for semantic 

segmentation. While a neural network provided the best 

results, its accuracy was still insufficient for solving the 

task. 

3.2. Creation of a model 

The step-by-step representation of the intelligent analysis 

of thyroid cytology images is shown in Fig. 3. 

 
Fig. 3 – Intelligent analysis of thyroid cytology images 

The preprocessed whole-slide image of thyroid cytology is 

fed into several deep learning models that extract various 

informative features. Based on the predicted features for 

individual cells and their groups, the digital slide is 

classified according to algorithms developed and approved 

in collaboration with an expert, which depend on the type of 

image. It is important to note that the algorithm for 

categorizing WSIs according to the Bethesda system using 

computer vision, developed and agreed with the expert, 

requires the expert to identify values for certain parameters 

that influence the final categorization result. Therefore, in 

the course of practical experiments, it is necessary to assess 

the applicability of existing approaches for classifying 

whole-slide images using a single neural network model. 

 

For the localization and classification of cell clusters, an 

approach was developed that includes the following 

sequence of automated steps: splitting the whole-slide image 

into image tiles; semantic segmentation of image tiles; 

merging segmentation predictions into a whole-slide mask; 

applying the QuPath pixel classifier for detecting clusters on 

the whole-slide mask; exporting ROIs (regions with 

predicted clusters); classification of ROIs. The number of 

steps is due to the need for precise cluster counting, as 

segmentation of image tiles alone does not allow this due to 

the possibility of the same cluster appearing in different 

tiles. 

To extract features related to individual cells, a similar 

approach was developed: splitting the WSI into image tiles, 

semantic segmentation of images, contour detection on the 

resulting masks, and merging all contours of the image into 

one, considering their position on the original image. In this 

case, the tile size is much larger than the size of the features, 

and the number of detected cells is usually large, which led 

to the decision not to proceed with further steps.  

 

3.3 Applying trained models 

To assess the performance of the trained models for 

semantic segmentation of images, IoU and DC metrics were 

applied [22]: 

 
The average values of IoU and DC were calculated for 

datasets consisting of several images. 

 

To assess the performance of the trained models for image 

classification, the metrics accuracy, precision, recall, and f1-

score were applied [23]: 

 
The ability of existing approaches to classify whole-slide 

images (WSIs) at once using a single neural network model 

was explored in experiments with fine-tuning the CLAM 

model [24], and detailed results for classifying WSIs into 

two classes are presented in [19]. The results of training the 

DeepLabV3+ model [25] with the EfficientNet-B6 encoder 

[26] for semantic segmentation of tile images to detect cell 

clusters are also presented there. 

 

The predicted regions of interest containing cell clusters 

need to be classified into categories. A series of model 

trainings from the YOLO family [27], [28] were conducted 

for classification. The experiments began with a balanced 

training dataset: shapeless structures with ordered cell 

arrangement (290 images) + shapeless structures with 
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unordered cell arrangement (290 images) + papillary 

structures (281 images) = 861 images (72%). The test 

dataset consisted of 102 + 134 + 95 = 331 images (28%). 

The best results on the test set for the YOLO models trained 

on the balanced training dataset are presented in Table 1. 

 
Table 1 — Best results on the test set for YOLO models trained on the 

balanced training dataset for classifying cell clusters into 3 classes 

 
 

With such a small training dataset, better results were 

achieved by models with fewer layers (parameters). 

Since there were also labeled and verified images from the 

first two classes, data was incrementally added to the 

training set, and the models were fine-tuned until the metrics 

on the test set improved. The results are presented in Table 

2. The size of the maximum side of the input image, to 

which the images were resized, was 224 pixels. 

 
Table 2 — Best test results of YOLO models trained on datasets with 
different class balance for classifying cell clusters into 3 classes 

 
 

Based on the obtained results, it can be concluded that 

with an increase in the training dataset, the model with a 

larger number of layers (parameters) starts to perform better.  

 

 
Fig. 4 — Loss function and accuracy metric graphs during fine-tuning and 

test accuracy of yolov8s-cls for classification of cell clusters into 3 classes 

However, when there is a class imbalance of more than 3 

times, the model's performance deteriorates. The fine-tuning 

graphs for the best-performing model, yolov8s-cls, at the 

moment are shown in Fig. 4. The best test performance 

when classifying into 3 classes is: accuracy = 77.9%. 

After annotating new images with cell clusters from 

classes with fewer examples, the current model will be fine-

tuned, and models with more layers will be trained. 

Examples of predictions of cell clusters by the trained 

models are shown in Fig. 5. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 — Examples of predictions by the trained models of cell clusters: (a) 

- monolayered sheets of evenly spaced follicular cells; (b) - crowded groups 

of follicular cells; (c) - papillary structures 

Experiments with various algorithms were conducted for 

semantic segmentation of individual cells. Initially, different 

computer vision methods were applied to search for 

informative features, and parameters were selected on 

several images for more accurate segmentation. However, 

due to the high variability of the images, the algorithm 

performed poorly on the validation set. Additionally, the 

images often contained various types of noise, which the 

algorithm tried to highlight. 

Subsequent experiments were carried out using a pre-

trained SAM model. Since it was not trained on medical 

images, the accuracy was low in automatic mode; the model 

only detected nuclei and missed other parts of the cells. 

Furthermore, experiments were conducted with lighter 

models specializing in working with medical images. 

Networks such as Unet, Unet++, LinkNet, and FPN were 

trained with different encoders: resnet101, resnet152, 

mobileone_s1, mobilenet_v2, efficientnet-b0, timm-
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tf_efficientnet_lite4, timm-efficientnet-b8 [29]. Parameters 

such as weight_decay, max_lr, epoch, loss function, and 

optimizer were tuned to achieve the highest accuracy 

according to the DC metric. The training time per epoch for 

various models and encoders was also measured to find the 

optimal balance between "runtime - accuracy." 

Based on the experiment results, the Unet++ model with 

the mobilenet_v2 encoder, JaccardLoss as the loss function, 

max_lr = 1e-4, epoch = 50, and weight_decay = 1e-3 was 

selected. The training time was 42 seconds per epoch, and 

the accuracy was DC_avg = 90.9% for a dataset consisting 

of 1500 pairs of "original image with pseudo 

inclusions/without pseudo inclusions — its binary mask".  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6 — Training graphs of Unet++ with mobilenet_v2 encoder for 
localization (a) - pseudo-inclusions, (b) - C-cells, (c) - Hurthle cells 

 

For the dataset with C-cells, the accuracy was DC_avg = 

90.2%. The Hurthle cells were segmented with an accuracy 

of DC_avg = 86.2%. The metric graphs during training are 

shown in Fig. 6. 
 

Examples of predictions made by trained models for 

individual cells when analyzing WSI are presented in Fig. 7. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 — Predictions of the model on tiles: (a) — with pseudoinclusions, 

(b) — with C-cells, (c) — with Hurthle cells. Labels: Image - original 
image, Mask - annotated mask, Result - model output 

IV. RESULTS 

In the conducted study, approaches using neural network 

models for the automatic processing, segmentation, and 

classification of cytological images of the thyroid gland in 

accordance with the features necessary for classification 

according to the Bethesda system were developed. The main 

results include: 

1. Models for analysis at the level of clusters and 

cells: 

○ The average DC for cell segmentation with 

pseudoinclusions was 90.9%. 
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○ The accuracy on the dataset with C-cells was 

90.2%. 

○ The average DC for Hurthle cells reached 86.2%. 

○ Cell clusters were segmented with an IoU average 

of 84% and DC average of 91%. 

○ Classification of cell clusters into three categories 

reached an accuracy of 77.9%. 

2. Models for analysis at the level of whole slides: 

○ The ability of existing approaches to classify whole 

slide images using a single neural network model was 

assessed: the accuracy of WSI classification into two classes 

(Bethesda-2 and Bethesda-5—Bethesda-6) was 90%. 

3. Effectiveness of working with tiles: 

○ Dividing whole-slide images into tiles significantly 

reduced computational costs while maintaining a high level 

of analysis accuracy. 

○ Based on preprocessing and augmentation of the 

tiles, the models improved segmentation and classification 

results. 

4. Practical significance: 

○ The system built on the proposed models allows for 

significant reduction of cytologist workload by highlighting 

informative areas on the images and automatically 

classifying them. 

○ The obtained results enable the integration of such 

systems into clinical practice, improving the quality and 

speed of thyroid disease diagnosis. 

The data obtained confirm the promising application of 

artificial intelligence for the automatic processing and 

analysis of cytological thyroid gland images in medical 

practice. 

V. DISCUSSION 

The results of the study confirm that the application of 

modern deep neural network methods and machine learning 

for the analysis of cytological images of the thyroid gland 

has significant potential in clinical practice. However, 

during the work, some limitations were identified, as well as 

directions for further development. 

1. Analysis of Segmentation and Classification 

Accuracy 

○ High accuracy metrics (Dice Coefficient and IoU) 

demonstrate the effectiveness of the proposed approach. 

However, the classification accuracy of cell clusters (77.9%) 

requires further improvement. This is due to the variability 

in the clusters' structures. Therefore, expanding the training 

dataset with new data is necessary. 

2. Features of Whole Slide Images 

○ Despite the success in tile-based image processing, 

analyzing whole slide images without prior tiling 

demonstrated lower accuracy, particularly in classifying 

small features. This indicates the need for a further 

optimized approach for working with WSI. A possible 

solution could be the use of hybrid methods combining tile 

analysis and full-image context analysis. 

3. Data Augmentation 

○ The use of data augmentation improved the results 

of segmentation and classification. However, employing 

more complex approaches, such as Generative Adversarial 

Networks, could provide more diverse data that accounts for 

real clinical scenarios. 

4. Integration into Clinical Practice 

○ The developed system already shows potential in 

reducing the time spent on routine tasks for cytologists. 

However, for full-scale implementation, further clinical 

trials are necessary to assess how well the model performs 

with images from different medical institutions. 

○ An important issue is still the interpretability of 

neural network predictions. Explaining model results and 

integrating them into understandable reports for clinicians is 

a key aspect for gaining trust in such systems. 

5. Ethical and Practical Aspects 

○ When developing such systems, it is important to 

consider potential errors that could lead to incorrect 

diagnoses. Therefore, such a system should be used as a 

support tool rather than replacing the physician. 

○ Additionally, patient data protection must be 

ensured, as the processing of medical images requires strict 

adherence to privacy legislation. 

6. Directions for Future Research 

○ Investigation of alternative neural network 

architectures. 

○ Implementation of multimodal approaches (for 

example, analyzing text reports alongside image analysis) to 

improve diagnostic accuracy. 

○ Studying the possibility of automatic classification 

of all levels of the Bethesda system, considering finer 

subcategories. 

VI. CONCLUSIONS 

The paper presents the results of a study on the capabilities 

of modern neural networks for analyzing cytological images 

in the svs format according to the Bethesda categorization 

system. The characteristics of processing and intelligent 

analysis of whole-slide cytological images from thyroid fine 

needle aspiration are outlined. The paper discusses 

challenges that may arise when working with digitized 

cytological images, from the annotation process to 

automated intelligent analysis, as well as solutions that can 

address these identified issues. A methodology for the 

automated extraction of significant features from cytological 

thyroid images and their categorization using computer 

vision in accordance with the international Bethesda criteria 

is developed, and training and testing of the trained models 

are carried out. 
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