
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

125

Аннотация—С увеличением числа неоднородных

источников данных в науке и промышленности растет
потребность в их интеграции. В различных предметных

областях разрабатываются специализированные системы

интеграции данных. Ввиду сложности программ

интеграции данных, важным вопросом является

формальная проверка их корректности – верификация.
Корректность программы интеграции данных понимается

как определяемое экспертом свойство, связывающее

состояние совокупности источников данных и состояние

целевой интегрирующей базы данных, выражаемое в виде

логической формулы. Процесс формальной верификации
сложен, однако оправдан, поскольку стоимость

исправления ошибки после выпуска системы в

производство превышает стоимость исправления ошибки

на этапе разработки системы в десятки и сотни раз. На

практике программы интеграции часто реализуются на
императивных языках. В статье выделены особенности и

суммирован опыт по определению формальной семантики

императивных языков для верификации программ

интеграции данных в областях астрономии,

материаловедения, управления землепользованием.
Рассмотрены особенности определения семантики

библиотечных математических и строковых функций,

функций преобразования данных, оператора

присваивания и вызова вспомогательных функций,

последовательной композиции операторов, условного
оператора, операторов циклов. Приведены общие

принципы применения формальной семантики

императивного языка программирования для

верификации программ интеграции данных с

использованием автоматизированных средств
доказательства.

Ключевые слова—формальная семантика программ,
верификация программ, интеграция данных.

I. ВВЕДЕНИЕ

С увеличением числа неоднородных источников

данных в науке и промышленности растет потребность

в их интеграции [1]. Для этого в различных предметных

областях разрабатываются системы интеграции данных .

К примерам таких областей относятся астрономия [4],

управление землепользованием [7], материаловедение

[5], науки о Земле [8].

Ввиду сложности программ интеграции данных,

Статья получена 1 октября 2025.
С.А. Ступников – МГУ имени М.В. Ломоносова, Федеральный

исследовательский центр «Информатика и управление» РАН
(sstupnikov@ipiran.ru)

важным вопросом является формальная проверка их

корректности (верификация). Корректность программы

интеграции данных – это определяемое экспертом

свойство, связывающее состояние совокупности

источников данных и состояние целевой

интегрирующей базы данных, выражаемое в виде

логической формулы. Например, корректность может

состоять в том, что для всех объектов из источников в

целевой базе данных в результате применения

программы интеграции появляются их правильные

образы (отсутствуют потерянные данные). Процесс

формальной верификации сложен, однако оправдан,

поскольку стоимость исправления ошибки после

выпуска системы в производство превышает стоимость

исправления ошибки на этапе разработки системы в

десятки и сотни раз [12].

Основная идея подходов к верификации программ

обычно состоит в том, чтобы определить их семантику в

некотором формальном языке. Свойства программ,

подлежащие проверке, представляются в виде

выражений этого языка. Затем, с использованием

формальных средств доказательства, спецификация,

выражающая семантику конкретной программы

интеграции данных, проверяется на соответствие

необходимым свойствам.

Программы интеграции данных могут быть

реализованы на различных языках: на логических

правилах [15], декларативных (таких, как SQL [16] и

HIL [14]), императивных (например, VBScript [17]). С

концептуальной точки зрения для спецификации

программ интеграции данных предпочтительны

декларативные специализированные языки высокого

уровня. Однако на практике программы интеграции

нередко реализуются на императивных языках.

В данной статье выделены особенности и суммирован

опыт по определению формальной семантики

императивных языков для верификации программ

интеграции данных в базе данных двойных звезд,

разработанной в ИНАСАН [4][2][3]; в интегрированной

системе баз данных по свойствам неорганических

веществ и материалов Института металлургии и

материаловедения им. А.А. Байкова РАН [5][6]; в

системе «Умное землепользование», разрабатываемой в

Почвенном институте имени В.В. Докучаева [7]. Для

единообразия изложения примеры и образцы

программного кода программ интеграции данных

приведены на языке Python. Работа сосредоточена на

том подмножестве императивного языка, которое

Особенности определения формальной

семантики императивного языка для

верификации программ интеграции данных

С. A. Ступников

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

126

используется для реализации программ интеграции

данных в конкретном наборе систем интеграции.

Существует достаточное количество работ,

посвященных определению различных видов семантики

(операционной, денотационной, аксиоматической)

императивных языков программирования [18].

Существуют и работы, посвященные определению

операционной семантики непосредственно языка Python

[19][20]. Для определения семантики в известных

работах используются различные формальные языки.

В качестве языка определения формальной семантики

в данной работе используется Нотация абстрактных

машин (AMN) [9] — язык, основанный на логике

первого порядка и теории множеств. Язык AMN

позволяет моделировать программные системы в виде

абстрактных машин – спецификаций пространства

состояний и поведения (определенного операциями на

состояниях) систем. Спецификация состояния

абстрактной машины задается переменными состояния

вместе с инвариантами — ограничениями, которые

должны всегда удовлетворяться. Операции

определяются на основе расширения формализма

охраняемых команд Дейкстры (обобщенных

подстановок). AMN выбран как язык, поддержанный

индустриальной технологией и средствами

доказательства Atelier B [11]. Накоплен более чем

двадцатилетний мировой опыт применения языка AMN

и средств его инструментальной поддержки при

разработке промышленных программных систем [13].

Данная работа демонстрирует, что язык AMN позволяет

определить денотационную семантику императивных

программ, которая позиционируется как подход,

позволяющий наиболее полно и точно выразить

значение конструкций языка программирования.

В разделе II настоящей статьи суммированы

особенности определения семантики подмножества

конструкций императивного языка, используемого для

определения программ интеграции данных:

библиотечных математических и строковых функций,

функций преобразования данных, оператора

присваивания и вызова вспомогательных функций,

последовательной композиции операторов, условного

оператора , циклов. Основная часть иллюстративных

примеров использует фрагменты программ интеграции

данных в базу данных двойных звезд. Отдельные детали

программ интеграции опущены для упрощения

изложения. В разделе III изложены общие принципы

применения формальной семантики императивного

языка программирования для верификации программ

интеграции данных.

II. ОСОБЕННОСТИ ОПРЕДЕЛЕНИЯ ФОРМАЛЬНОЙ

СЕМАНТИКИ КОНСТРУКЦИЙ ИМПЕРАТИВНОГО ЯЗЫКА

A. Особенности определения семантики

библиотечных математических функций

При определении семантики библиотечных

математических функций можно абстрагироваться от

конкретных реализаций этих функций и задать их

свойства при помощи явных выражений или формул

логики предикатов первого порядка. Ниже этот принцип

продемонстрирован на примере функций trunc и sqrt

модуля Math языка Python, используемых при

определении программ интеграции данных в базе

данных двойных звезд (Листинг 1).

MACHINE

 Math

ABSTRACT_CONSTANTS

 trunc,

 sqrt,

PROPERTIES

 trunc = %xx.(xx: REAL | floor(xx)) &

 sqrt: REAL +-> REAL &

 !xx.(xx: REAL & xx >= 0 =>

 sqrt(xx)*sqrt(xx) = xx)

END

Листинг 1. Пример определения семантики библиотечных
математических функций

Для модуля определена одноименная спецификация

AMN вида MACHINE. Функции определены как

абстрактные константы спецификации.

Если значение функции может быть задано

арифметическим выражением, параметром которого

является аргумент функции (например, функция trunc),

то функция задается в AMN соответствующим лямбда -

выражением %. В случае функции trunc это выражение

крайне простое (floor(xx)), поскольку в AMN существует

встроенная функция округления вещественного числа

floor (“floor represents the floor function, defined for ℝ in

Z. floor(x) represents the floor of x, i.e the only integer n

such that n <= x < n+1” [10]).

Если встроенных арифметических функций AMN

недостаточно, чтобы выразить семантику функции в

виде выражения (например, sqrt), то соответствующая

абстрактная константа типизируется как частичная

функция (+->) из типа аргумента в тип возвращаемого

значения. Дополнительно определяется формула –

логическая импликация (=>) под квантором

всеобщности (!) по аргументу функции, в которой для

любого значения аргумента функции задается связь

между значением аргумента и возвращаемым значением

функции. В случае функции sqrt эта связь задается

предикатом равенства (Листинг 1):

sqrt(xx)*sqrt(xx) = xx

B. Особенности определения семантики функций

преобразования данных

В случаях, когда при определении программ

интеграции данных выделяются модули повторно

используемых функций относительно простых

преобразований данных, семантика этих модулей

определяется в AMN с использованием отдельных

спецификаций вида MACHINE. Функции при этом

представляются операциями спецификации. Пример

функции преобразования астрономических данных

(преобразующей относительные координаты объекта на

небесной сфере в абсолютные), используемой в

программе интеграции данных в базе данных двойных

звезд выглядит следующим образом:

def rel2abs(bRA,bDE,theta,rho):

 theta=theta-360.0*math.trunc(theta/360.0)

 if theta<0:

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

127

 theta=360.0+theta

 th=theta*math.pi/180.0

 dd=rho/math.sqrt(1.0+(math.tan(th)**2))

 da=abs(dd)*abs(math.tan(th))

 if theta<90.0:

 if bDE<0.0:

 dd=-dd

 elif theta<180.0:

 if bDE>0.0:

 dd=-dd

 elif theta<270.0:

 da=-da

 if bDE>0.0:

 dd=-dd

 else:

 da=-da

 if bDE<0.0:

 dd=-dd

 return (bRA+da,bDE+dd)

Листинг 2. Пример определения функции преобразования
астрономических данных

Семантика функции rel2abs выражается в виде

одноименной операции спецификации Conversions:

MACHINE

 Conversions

SEES Math

OPERATIONS

ra, de <-- rel2abs(bRA, bDE, theta, rho) =

PRE

 bRA: REAL & bDE: REAL & theta: REAL & rho: REAL

THEN

 ANY theta, theta1, th, dd, dd1, da, da1 WHERE

 theta: REAL &

 theta = theta –

 360.0*real(trunc(theta/360.0)) &

 theta1: REAL &

 (theta < 0.0 => theta1 = 360.0 + theta) &

 (theta >= 0.0 => theta1 = theta) &

 th: REAL & th = theta0 * pi/180.0 &

 dd: REAL & dd = rho/sqrt(1.0 + (tan(th)**2)) &

 da: REAL & da = abs(dd)*abs(tan(th)) &

 dd1: REAL & da1: REAL &

 (theta1 < 90.0 & bDE < 0.0 =>

 dd1 = 0.0 - dd & da1 = da) &

 (theta1 >= 90.0 & theta1 < 180.0 & bDE > 0.0 =>

 dd1 = 0.0 - dd & da1 = da) &

 (theta1 >= 180.0 & theta1 < 270.0 & bDE> 0.0 =>

 da1 = 0.0 - da & dd1 = 0.0 - dd) &

 (theta1 >= 180.0 & theta1< 270.0 & bDE<= 0.0 =>

 da1 = 0.0 - da & dd1 = dd) &

 (theta1 >= 270.0 & bDE < 0.0 =>

 da1 = 0.0 - da & dd1 = 0.0 - dd) &

 (theta1 >= 270.0 & bDE >= 0.0 =>

 da1 = 0.0 - da & dd1 = dd)

 THEN

 ra, de := bRA + da1, bDE + dd1

 END

END

Листинг 3. Пример определения семантики функции преобразо вания
данных

Предусловием (PRE) операции является конъюнкция

правильной типизации аргументов. Тело операции

составляет подстановка неограниченного выбора ANY,

в которой определяются все используемые в функции

вспомогательные переменные (theta, th, dd, da),

задаются ограничения на их значения.

Так, если значение переменной в функции задается

одним оператором присваивания (Листинг 2), например,

th=theta*math.pi/180.0

то его семантика выражается конъюнкцией предикатов

типизации и равенства (Листинг 3):

th: REAL & th = theta * pi/180.0

Если значение переменной в функции задается

несколькими операторами присваивания (как, например,

в случае переменной theta в Листинге 2), то для каждого

оператора присваивания в подстановке ANY

определяется отдельная переменная (например, theta и

theta1) и отдельный предикат равенства (Листинг 3).

Семантика условного оператора if выражается здесь

логическими импликациями. Так, например, семантика

условного оператора (Листинг 2)

if theta<0:

 theta=360.0+theta

выражается конъюнкцией импликаций (Листинг 3):

(theta < 0.0 => theta1 = 360.0 + theta) &

(theta >= 0.0 => theta1 = theta)

C. Особенности определения семантики

библиотечных строковых функций

Семантика библиотечных строковых функций

выражается в AMN при помощи операций отдельной

спецификации StringType вида MACHINE.

При определении семантики библиотечных

строковых функций, также, как и при определении

семантики библиотечных математических функций,

можно абстрагироваться от конкретных реализаций этих

функций и определить их семантику с использованием

тех видов подстановок, которые могут использоваться в

спецификациях вида MACHINE [9] (в частности,

предусловия PRE, условной подстановки IF-THEN-

ELSE, подстановки неограниченного выбора ANY).

Ниже определение семантики библиотечных

строковых функций в AMN будет иллюстрироваться на

примере ограниченного варианта функции split,

используемого в программах интеграции данных в базе

данных двойных звезд (Листинг 4). Фактически,

используется бинарное разбиение строк по разделителю.

В случае, если разбиение не является бинарным,

выбрасывается ошибка.

res=str.split(char)

if len(res)!=2:

 raise_error

Листинг 4. Фрагмент программы интеграции данных с
использованием библиотечной строковой функции

Семантика функции бинарного разбиения строки

представляется в AMN операцией binary _split (Листинг

5).

res <-- binary_split(str, char) =

PRE str: seq(CHAR) & char: CHAR &

 res: seq(seq(CHAR)) & str: FIN(str) &

 (size(str) = 0 or size(str) > 0 &

 card({ind | ind: INT & ind >= 1 &

 ind <= size(str) & str(ind) = char }) <= 1)

THEN

 IF card({ind | ind: INT & ind >= 1 &

 ind <= size(str) & str(ind) = char }) = 0

 THEN

 res:= [str]

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

128

 ELSE

 ANY ind WHERE

 ind: INT & ind >= 1 & ind <= size(str) &

 str(ind) = char

 THEN

 res:= [str /|\ (ind - 1), str \|/ ind]

 END

 END

END

Листинг 5. Пример определения семантики строковой функции

Строки типизируются как последовательности (seq)

символов (CHAR).

Семантика выбрасывания ошибки по условию

выражается в AMN с использованием добавления

соответствующего предиката в предусловие операции.

Так, условие небинарного разбиения строки (Листинг 4)

len(res)!=2

эквивалентно вхождению в строку разделяющего

символа в количестве большем 1. В этом случае к

предусловию конъюнктивно добавляется предикат,

утверждающий обратное (Листинг 5):

card({ind | ind: INT & ind >= 1 &

 ind <= size(str) & str(ind) = char }) <= 1

Основное тело операции составляет условная

подстановка IF с двумя ветвями. В первой ветви при

условии, что разделительный символ в строке не

встречается, операция возвращает последовательность

[str] из одного элемента (входной строки str). Во второй

ветви, отвечающей условию, что разделительный

символ встречается ровно один раз, операция

возвращает последовательность из двух подстрок,

разделяемых разделяющим символом во входной

строке. При этом операция str /|\ n обозначает операцию

обрезания хвоста последовательности, начиная с

индекса n, а операция str \|/ m обозначает обрезание m

первых элементов последовательности [9].

D. Особенности определения семантики оператора

присваивания и вызова вспомогательных функций

В данном подразделе рассмотрены виды

присваивания значений вспомогательным переменным,

используемые в программах интеграции данных в базу

данных двойных звезд.

Следует отметить, что семантика вспомогательных

переменных выражается в AMN с использованием

одноименных абстрактных переменных

соответствующей спецификации. Переменные должны

быть явно определены в разделе

ABSTRACT_VARIABLES и явно типизированы в

разделе INVARIANT (Листинг 6).

ABSTRACT_VARIABLES

 pmC, pmRA, compA, RA1, RA2, DE2

INVARIANT

 pmC: REAL &

 pmRA: REAL &

 compA: seq(CHAR)

 RA1: REAL &

 RA2: REAL &

 DE1: REAL &

 DE2: REAL &

 theta: REAL &

 rho: REAL

Листинг 6. Определение и типизация вспомогательных переменных

Семантика присваивания переменной значения

встроенного типа, арифметического выражения или

встроенной функции, семантика которой может быть

выражена при помощи встроенной функции AMN

(Листинг 7) выражается подстановкой «becomes equal

to» (:=) (Листинг 8).

pmC=1.0

pmRA=pmC*fld13

compA=fs[0]

Листинг 7. Пример операторов присваивания

pmC:= 1.0

pmRA:= pmC*real(fld13)

compA:= fs(1)

Листинг 8. Семантика операторов присваивания

В качестве примера встроенной функции выше

приведено обращение к элементу массива. Семантика

массивов выражается в AMN последовательностями,

нумерация элементов которых начинается с 1 (поэтому

индексу массива 0 соответствует индекс

последовательности 1).

Семантика присваивания переменной значения

функции преобразования данных

RA1=hms2deg(float(fld20),float(fld21),fld22)

выражается подстановкой вызова операции (<--),

выражающей семантику этой функции преобразования

данных:

RA1 <-- hms2deg(real(fld20), real(fld21), fld22)

В случае, если в параметрах вызова функции

(например, rel2abs) используется другая функция

преобразования данных (например, asec2deg)

(RA2,DE2)=rel2abs(RA1,DE1,theta,asec2deg(rho))

для сохранения значения вложенного функционального

терма используется подстановка локальной переменной

VAR (Листинг 9).

VAR rho1 IN

 rho1 <-- asec2deg(rho);

 RA2, DE2 <-- rel2abs(RA1, DE1, theta, rho1)

END

Листинг 9. Семантика присваивания с использованием вл оженно го

функционального терма

E. Особенности определения семантики

последовательной композиции операторов

Семантика последовательной композиции операторов

императивного языка может быть выражена в AMN

следующими способами:

1) с использованием последовательной подстановки

«;»;

2) с использованием параллельной подстановки «||»;

3) с использованием последовательного вызова

операций AMN.

В случае, если набор операторов, соединяемых в

последовательную композицию, достаточно прост, т.е.

содержит не более двух вызовов функций, семантика

которых выражается операциями AMN (Листинг 10), то

его семантика может быть выражена как операцией с

использованием последовательной подстановки

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

129

(Листинг 11), так и операцией с использованием

параллельной подстановки (Листинг 12).

compA="A"

compB="B"

Листинг 10. Пример последовательной композиции операторов

pre_iteration_CompInit =

BEGIN

 compA:= [CHAR_A];

 compB:= [CHAR_B]

END

Листинг 11. Семантика последовательной композиции с
использованием последовательной подстановки

pre_iteration_CompInit =

BEGIN

 compA:= [CHAR_A]

 ||

 compB:= [CHAR_B]

END

Листинг 12. Семантика последовательной композиции с
использованием параллельной подстановки

Заметим, что последовательная композиция может

быть реализована с использованием параллельной

подстановки только в том случае, если порядок

исполнения операторов не влияет на результат

программы (например, если в наборе нет двух

операторов, изменяющих одну и ту же переменную).

В случае, если набор операторов содержит более двух

вызовов функций, семантика которых выражается

операциями AMN (Листинг 13), то его семантика

выражается с использованием последовательного

вызова операций AMN (Листинг 14).

if fld18.find("B")>=0:

 band="blue"

if fld18.find("K")>=0:

 band="ir"

if fld18.find("R")>=0:

 band="red"

Листинг 13. Пример последовательности операторов с более чем
двумя вызовами функций

pre_iteration_band_blue =

SELECT

 state = COMP_AB_UPDATE

THEN

 VAR nn IN

 nn <-- find(fld18, CHAR_B);

 IF nn >= 0 THEN

 spBand:= [CHAR_b, CHAR_l, CHAR_u, CHAR_e]

 END

 END;

 state:= FLD18_FIND_B

END;

pre_iteration_band_ir =

SELECT

 state = FLD18_FIND_B

THEN

 VAR nn IN

 nn <-- find(fld18(iteration_num), CHAR_K);

 IF nn >= 0 THEN

 spBand:= [CHAR_i, CHAR_r]

 END

 END;

 state:= FLD18_FIND_K

END;

pre_iteration_band_red =

SELECT

 state = FLD18_FIND_K

THEN

 VAR nn IN

 nn <-- find(fld18(iteration_num), CHAR_R);

 IF nn >= 0 THEN

 spBand:= [CHAR_r, CHAR_e, CHAR_d]

 END

 END;

 state:= FLD18_FIND_R

END;

Листинг 14. Пример определения семантики последовательности

операторов с более чем двумя вызовами функций

В данном случае в программе интеграции

производится вызов функции find(str, char),

возвращающей первую позицию, на которой в строке str

находится символ char (Листинг 13).

Последовательная передача управления между

операциями осуществляется при помощи переменной

состояния state. Например, после исполнения первой

операции pre_iteration_band_blue переменная state

принимает значение FLD18_FIND_B. Вторая операция

pre_iteration_band_ir может быть исполнена ровно в

этом же случае, об этом говорит условие в секции

SELECT (Листинг 14):

state = FLD18_FIND_B

Препятствием к объединению всех трех операций в

одну и замену последовательного вызова операций на

последовательную или параллельную подстановку

являются их свойства в языке AMN. Дело в том, что

сложность теорем корректности отдельной операции

AMN экспоненциально растет от количества операций,

определенных в других спецификациях, и вызываемых в

ней. Сложность теоремы корректности для операции

можно оценить при помощи количества автоматически

генерируемых лемм (proof obligations). Так, для всех

трех операций, приведенных выше, генерируется по 7

лемм. Если объединить две операции в одну, то для нее

будет сгенерировано 25 лемм. Если же объединить все

три операции в одну, то будет сгенерировано 85 лемм.

Отметим, что количество лемм не меняется от замены

последовательной подстановки на параллельную. А

поскольку применение параллельной подстановки

связано с дополнительным анализом независимости

результата от порядка исполнения операторов, то в

простом случае достаточно использовать только

последовательную подстановку.

F. Особенности определения семантики условного

оператора

Семантика условного оператора с произвольным

количеством ветвей, условия которых не содержат

вызовов функций преобразования данных (Листинг 15)

естественным образом выражается с использованием

условной подстановки (Листинг 16).

if fld7 >=0 and fld9 >= 0:

 theta=fld7

 rho=fld9

 year=fld4

elif fld6 >=0 and fld8 >=0:

 theta=fld6

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

130

 rho=fld8

 year=fld3

else:

 theta=0

 rho=0

 year=fld[4]

Листинг 15. Пример условного оператора, не со держ ащ ег о вызо вы

функций преобразования данных

pre_iteration_Angles =

BEGIN

 IF fld7 >= 0 & fld9 >= 0.0

 THEN

 theta:= real(fld7);

 rho:= fld9;

 year:= fld4

 ELSIF fld6 >= 0 & fld8 >= 0.0

 THEN

 theta:= real(fld6);

 rho:= fld8;

 year:= fld3

 ELSE

 theta:= 0.0;

 rho:= 0.0;

 year:= fld4

 END

END

Листинг 16. Пример семантики условного оператора, не содержащего

вызовы функций преобразования данных

Если условие содержит небольшое число (1 или 2)

вызовов функций преобразования данных, например

if rho>=0:

 (RA2,DE2)=rel2abs(RA1,DE1,theta,asec2deg(rho))

то семантика такого оператора также может быть

выражена в одной операции при помощи условной

подстановки IF и подстановки локальной переменной

VAR (Листинг 17).

pre_iteration_rel2abs =

BEGIN

 IF rho >= 0.0 THEN

 VAR rho1 IN

 rho1 <-- asec2deg(rho);

 RA2, DE2 <-- rel2abs(RA1, DE1, theta, rho1)

 END

 END

END

Листинг 17. Пример семантики условного оператора, со д ер жащего
небольшое количество вызовов функций преобразования данных

Если же условие содержит большее количество

вызовов функций преобразования данных (Листинг 18),

то семантика такого условного оператора выражается с

использованием последовательного вызова операций и

вспомогательных переменных, используемых для

хранения результатов вызова операций, выражающих

семантику функций преобразования данных (Листинг

19).

if fld18.find("S")>=0 or

 fld18.find("U")>=0 or

 fld18.find("Y")>=0:

 otype="Opt"

Листинг 18. Пример условного оператора, содержащего более чем два
вызова функций преобразования данных

pre_iteration_otype_S =

SELECT

 iteration_state = FLD18_FIND_P

THEN

 S_count <-- find(fld18, CHAR_S);

 iteration_state:= FLD18_FIND_S

END;

pre_iteration_otype_U =

SELECT

 iteration_state = FLD18_FIND_S

THEN

 U_count <-- find(fld18, CHAR_U);

 iteration_state:= FLD18_FIND_U

END;

pre_iteration_otype_Y =

SELECT

 iteration_state = FLD18_FIND_U

THEN

 Y_count <-- find(fld18, CHAR_Y);

 IF S_count >= 0 or U_count >= 0 or Y_count >= 0

 THEN

 otype:= [CHAR_O, CHAR_p, CHAR_t]

 END;

 iteration_state:= FLD18_FIND_Y

END;

Листинг 19. Пример семантики условного оператора, со д ер жащего
более чем два вызова функций преобразования данных

Семантика вызовов функций преобразования данных

(в данном случае find) выражается при помощи

отдельных операций AMN. Условная подстановка

включается в последнюю из операций.

G. Особенности определения семантики циклов

В данном подразделе рассматривается два вида

циклов: while и for, общий вид которых изображен на

Листинге 20.

// while loop

iter = 1

while iter <= ITER_COUNT:

 data = transform_data(iter)

 iter += 1

// for loop

for rec in records

 data = transform_data(rec)

Листинг 20. Общий вид операторов циклов

Основная идея определения семантики циклов в AMN

состоит в следующем. Цикл выражается двумя

операциями init и iterate. Операция init переводит

систему из состояния (задаваемого переменной

iteration_state) LOOP_INITIAL в состояние

LOOP_ITERATION. Операция iterate вызывает

операцию трансформации данных, составляющую тело

цикла, и изменяет счетчик цикла. Если условие

продолжения цикла не выполняется, то операция

переводит систему в состояние LOOP_COMPLETED.

Спецификация, выражающая семантику цикла while

приведена в Листинге 21.

SETS

 ITERATION_STATE = {

 LOOP_INITIAL, LOOP_ITERATION, LOOP_COMPLETED }

ABSTRACT_VARIABLES

 iteration_state,

 iter,

 data

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

131

INVARIANT

 iteration_state: ITERATION_STATE &

 iter: INT &

 data: DATA &

 records: FIN(DATA) &

 recs: FIN(DATA)

OPERATIONS

init_while =

SELECT

 iteration_state = LOOP_INITIAL

THEN

 iter:= 1;

 iteration_state:= LOOP_ITERATION

END;

iterate_while =

SELECT

 iteration_state = LOOP_ITERATION

THEN

 IF iter <= ITER_COUNT THEN

 data <-- transform_data_for(iter);

 iter:= iter + 1

 ELSE

 iteration_state:= LOOP_COMPLETED

 END

END;

Листинг 21. Семантика цикла while

Спецификация, выражающая семантику цикла for

приведена в Листинге 22.

ABSTRACT_VARIABLES

 records,

 recs

INVARIANT

 records: FIN(DATA) &

 recs: FIN(DATA)

OPERATIONS

init_for =

SELECT

 iteration_state = LOOP_INITIAL

THEN

 recs:= records;

 iteration_state:= LOOP_ITERATION

END;

iterate_for =

SELECT

 iteration_state = LOOP_ITERATION

THEN

 IF recs /= {} THEN

 ANY rcrd WHERE rcrd: recs

 THEN

 data <-- transform_data_while(rcrd);

 recs:= recs - {rcrd}

 END

 ELSE

 iteration_state:= LOOP_COMPLETED

 END

END

Листинг 22. Семантика цикла for

III. ПРИМЕНЕНИЕ ФОРМАЛЬНОЙ СЕМАНТИКИ ДЛЯ

ВЕРИФИКАЦИИ ПРОГРАММ ИНТЕГРАЦИИ ДАННЫХ

Общие принципы применения формальной семантики

императивного языка программирования для

верификации программ интеграции данных состоят в

следующем.

Для программы интеграции данных, подлежащей

верификации, определяется ее формальная семантика в

языке AMN в соответствии с правилами, изложенными

в предыдущем разделе. При этом для каждого

библиотечного модуля и каждого модуля функций

преобразования данных создается отдельная

спецификация вида MACHINE. Для выражения

семантики основной программы интеграции создается

спецификация вида REFINEMENT. Свойства

корректности программы интеграции данных,

подлежащие верификации, определяются экспертом

вручную в виде формул, конъюнктивно

присоединяемых в раздел INVARIANT спецификации

(примеры этих свойств приведены, в частности, в

работах [16] [17]). Спецификации загружаются в проект

инструментария Atelier B [11], проводится проверка из

синтаксической корректности, проверка соответствия

типов, автоматически генерируются теоремы

корректности спецификаций. Для доказательства теорем

применяются средства автоматического и

интерактивного доказательства. Примеры статистики

доказательства теорем для конкретных программ

интеграции данных приведены в работах [16] [17]. В

случае, если все теоремы удалось доказать, интеграция

данных считается корректной. Если же какие-то из

теорем не удалось доказать, производится выяснение

причин этого, то есть выявление ошибок в программах

интеграции данных. Затем процесс определения

семантики и доказательства корректности повторяется

итеративно для исправленных программ интеграции

данных.

IV. ЗАКЛЮЧЕНИЕ

В статье выделены особенности и суммирован опыт

по определению формальной семантики императивных

языков для верификации программ интеграции данных в

базе данных двойных звезд, в интегрированной системе

баз данных по свойствам неорганических веществ и

материалов, в системе «Умное землепользование».

Денотационная семантика подмножества конструкций

императивного языка, используемого для создания

программ интеграции данных, определена с

использованием формального языка AMN, основанного

на логике первого порядка и теории множеств. Такое

определение семантики позволяет применять для

доказательства корректности программ интеграции

данных технологию и автоматизированные средства

доказательства Atelier B, имеющие более чем

двадцатилетний мировой опыт применения при

разработке промышленных программных систем.

БЛАГОДАРНОСТИ

Автор выражает благодарность научному сотруднику

ИНАСАН Павлу Кайгородову за содержательные

консультации по текстам программ интеграции данных

в базу данных двойных звезд.

Работа выполнена в рамках НИР 121041900216-9

«Конвергентные когнитивно-информационные

технологии, интеллектуальные инструменты, сервисы и

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

132

ресурсы безопасных распределенных информационно-

вычислительных инфраструктур в науке, образовании,

социуме».

БИБЛИОГРАФИЯ

[1] M. Masmoudi, S. Ben Abdallah Ben Lamine, M. H. Karray, B.
Archimede, and H. Baazaoui Zghal, “Semantic data integration an d
querying: A survey and challenges,” ACM Comput. Surv. , v o l. 5 6 ,
no. 8, pp. 1–35, 2024.

[2] D. Kovaleva, P. Kaygorodov, O. Malkov, B. Debray, and E . Ob lak,
“Binary star DataBase BDB development: Structure, algorithms, an d
VO standards implementation,” Astron. Comput., vol. 11 , p p . 1 1 9–

125, 2015.
[3] P. Kaygorodov, N. Skvortsov, D. Kovaleva, and O. Malkov, “A n ew

version of the binary star database BDB: Challenges and directions ,”
Open Astron., vol. 32, no. 1, 2023.

[4] The Binary Star Database. 2025. URL: https://bdb.inasan.ru/
[5] Интегрированная система баз данных по свойствам

неорганических веществ и материалов. ИМЕТ РАН. 2025. URL:
https://imet-db.ru/

[6] N. N. Kiselyova, V. A. Dudarev, and A. V. Stolyarenko, “Integrat ed
system of databases on the properties of inorganic su bstances an d
materials,” High Temp., vol. 54, no. 2, pp. 215–222, 2016.

[7] Крупный научный проект фундаментальных исследований

“Актуальные научные задачи стратегии адаптации потенциала
землепользования России в современных условиях
беспрецедентных вызовов (экономический кризис, изменения

климата, кризис глобальных тенденций природопользования)”. –
Почвенный институт имени В.В. Докучаева. 2023. URL:
https://www.esoil.ru/activities/projects_programs/minobr/knp_2020/

[8] V. Nundloll, R. Lamb, B. Hankin, and G. Blair, “A semantic approach

to enable data integration for the domain of flood risk management,”
Environmental Challenges, vol. 3, no. 100064, p. 100064, 2021.

[9] J.-R. Abrial, The B-book: Assigning programs to meanings.
Cambridge, England: Cambridge University Press, 2011.

[10] B Language Reference Manual. Version 1.8.10. ClearSy, 2025.
[11] Atelier B, the industrial tool to efficiently deploy the B Method. 2025.

URL: http://www.atelierb.eu/
[12] N. White, S. Matthews, and R. Chapman, “Formal verification: wil l

the seedling ever flower?,” Philos. Trans. A Math. Phys. Eng. Sci. ,
vol. 375, no. 2104, p. 20150402, 2017.

[13] M. Butler et al., “The first twenty-five years of industrial use of the B-

method,” in Lecture Notes in Computer Science, Cham: Springer
International Publishing, 2020, pp. 189–209.

[14] S. Stupnikov, “Semantics and verification of entity r esolutio n an d
data fusion operations via transformation into a formal notatio n,” in

Communications in Computer and Information Science, Cham:
Springer International Publishing, 2017, pp. 145–162.

[15] S. Stupnikov, “Rule-based specification and implementation of
multimodel data integration,” in Communications in Computer and
Information Science 822, Cham: Springer International Publishing,
2018, pp. 198–212.

[16] S.A. Stupnikov, “Formal Semantics and Verification of Procedural
SQL Programs Implementing Materialized Data Integration,”
Lobachevskii J Math, 2025. In print.

[17] С.А. Ступников, “Верификация интеграции данных в

интегрированной системе баз данных по свойствам
неорганических веществ и материалов,” Ученые записки
Казанского университета. Серия Физико-математические нау ки ,

167(2), 2025. В печати.
[18] P. D. Mosses, “Formal Semantics of Programming Lan gu ages : An

Overview,” Electronic Notes in Theoretical Computer Science,
148(1), pp. 41-73, 2006.

[19] D. Guth, “A formal semantics of Python 3.3,” Doctoral disserta tion ,
University of Illinois at Urbana-Champaign, 2013.

[20] M. A. Köhl, “An executable structural operational formal semantics
for Python,” Master Thesis, Saarland University, 2020. URL:

https://embedded.cs.uni-
saarland.de/publications/theses/thesis_cs_msc_Koehl_Maximilian.pdf

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

133

Abstract—Increasing number of heterogeneous data sources

in science and industry leads to the need for their integration.

Specialized data integration systems are being developed in

various subject domains. Due to the complexity of data

integration programs, formal verification of their correctness
becomes an important issue. The correctness of a data

integration program is expert-defined property binding the

state of a set of data sources and the state of the target

integrating database, expressed as a logical formula. The

formal verification process can be difficult, but the cost of
correcting an error after the system is released into production

exceeds the cost of correcting an error at the system

development stage by tens or hundreds of times. In practice,

data integration programs are often implemented using
imperative languages. The paper highlights the features and

summarizes the experience in definition the formal semantics

of imperative languages for data integration programs

verification in the domains of astronomy, materials science,

and land use management. The features of defining the
semantics of library mathematical and string functions, data

transformation functions, assignment statement and auxiliary

function invocation, sequential composition of statements,

conditional statement, and loop statements are considered. The

general principles of application of the formal semantics of
imperative programming languages for data integration

programs verification using automated proof tools are

presented.

Keywords—formal semantics of programs, program

verification, data integration.

REFERENCES

[1] M. Masmoudi, S. Ben Abdallah Ben Lamine, M. H. Karray, B.
Archimede, and H. Baazaoui Zghal, “Semantic data integration a n d

querying: A survey and challenges,” ACM Comput. Surv. , v o l. 5 6 ,
no. 8, pp. 1–35, 2024.

[2] D. Kovaleva, P. Kaygorodov, O. Malkov, B. Debray, and E . Ob lak,
“Binary star DataBase BDB development: Structure, algorithms, an d

VO standards implementation,” Astron. Comput., vol. 11 , p p . 1 1 9–
125, 2015.

[3] P. Kaygorodov, N. Skvortsov, D. Kovaleva, and O. Malkov, “A n ew
version of the binary star database BDB: Challenges and directions ,”

Open Astron., vol. 32, no. 1, 2023.
[4] The Binary Star Database. 2025. URL: https://bdb.inasan.ru/
[5] Integrated system of databases on the properties of inorganic

substances and materials . Baikov Institute of Metallurgy and

Materials Science, Russian Academy of Science. 2025. URL:
https://imet-db.ru/

[6] N. N. Kiselyova, V. A. Dudarev, and A. V. Stolyarenko, “Integrated

system of databases on the properties of inorganic su bstances an d
materials,” High Temp., vol. 54, no. 2, pp. 215–222, 2016.

[7] A major scientific project “Current scientific objectives of the strategy

for adapting Russia's land use potential in modern conditions of
unprecedented challenges (economic crisis, climate change, crisis o f
global environmental trends)”. – V.V. Dokuchaev Soil Science
Institute, 2023. URL:

https://www.esoil.ru/activities/projects_programs/minobr/knp_2020/
[8] V. Nundloll, R. Lamb, B. Hankin, and G. Blair, “A semantic approach

to enable data integration for the domain of flood risk management,”
Environmental Challenges, vol. 3, no. 100064, p. 100064, 2021.

[9] J.-R. Abrial, The B-book: Assigning programs to meanings.
Cambridge, England: Cambridge University Press, 2011.

[10] B Language Reference Manual. Version 1.8.10. ClearSy, 2025.
[11] Atelier B, the industrial tool to efficiently deploy the B Method. 2025.

URL: http://www.atelierb.eu/
[12] N. White, S. Matthews, and R. Chapman, “Formal verification: will

the seedling ever flower?,” Philos. Trans. A Math. Phys. Eng. Sci. ,
vol. 375, no. 2104, p. 20150402, 2017.

[13] M. Butler et al., “The first twenty-five years of industrial use of the B-
method,” in Lecture Notes in Computer Science, Cham: Springer
International Publishing, 2020, pp. 189–209.

[14] S. Stupnikov, “Semantics and verification of entity r esolutio n an d
data fusion operations via transformation into a formal notatio n,” in
Communications in Computer and Information Science, Cham:
Springer International Publishing, 2017, pp. 145–162.

[15] S. Stupnikov, “Rule-based specification and implementation of
multimodel data integration,” in Communications in Co m pu ter an d
Information Science 822, Cham: Springer International Pu blish ing,
2018, pp. 198–212.

[16] S.A. Stupnikov, “Formal Semantics and Verification of Procedural
SQL Programs Implementing Materialized Data Integration,”
Lobachevskii J Math, 2025. In print.

[17] S.A. Stupnikov, “Verification of data integration in th e in tegrated

system of databases on the properties of inorganic su bstances an d
materials,” Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-
Matematicheskie Nauki, 167(2), 2025. In print.

[18] P. D. Mosses, “Formal Semantics of Programming Lan gu ages : An
Overview,” Electronic Notes in Theoretical Computer Science,
148(1), pp. 41-73, 2006.

[19] D. Guth, “A formal semantics of Python 3.3,” Doctoral disserta tion ,

University of Illinois at Urbana-Champaign, 2013.
[20] M. A. Köhl, “An executable structural operational formal semantics

for Python,” Master Thesis, Saarland University, 2020. URL:
https://embedded.cs.uni-

saarland.de/publications/theses/thesis_cs_msc_Koehl_Maximilian.pdf

Stupnikov S.A., Ph. D., Research Scientist , Lo mo noso v Mo sco w
State University and Federal Research Center “Computer Science and

Control” of the Russian Academy of Sciences, Moscow, Ru ssia (e -
mail: sstupnikov@ipiran.ru)

On the Features of a Formal Semantics of an

Imperative Language for the Data Integration
Program Verification

Sergey Stupnikov

