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Rethinking the grouping strategy in bottom-up
multi-person pose estimation

Sina Moghimi

Abstract— Grouping keypoints into distinct human instances
remains a central challenge in multi-person pose estimation,
particularly under conditions of occlusion and dense crowding.
We propose a novel embedding-based grouping strategy that
encodes all keypoints of a single person into a compact 34-
dimensional vector. This embedding is predicted at each pixel
location using a transformer-based network that processes
visual features and stacked Hourglass network to predict
keypoint presence heatmaps. By associating keypoints with their
corresponding person-level embedding, our method removes the
need for heuristic post-processing for grouping. Furthermore,
the shared embedding structure naturally enables occlusion
recovery through voting among visible keypoints. Experiments
on the COCO dataset demonstrate competitive accuracy and
improved robustness in occluded scenes compared to existing
bottom-up approaches.
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I. INTRODUCTION

Multi-person pose estimation is the task of detecting and
localizing key human joints such as elbows, knees, and
shoulders in images or videos that contain multiple people.
This problem is particularly challenging due to variations in
human poses, occlusions, and dense crowding[1], [2]. Recent
advancements in deep learning have led to substantial
improvements in pose estimation accuracy, yet one of the
main remainingchallenges is grouping the detected keypoints
correctly foreach individualperson[2]. This step is especially
problematic in bottom-up approaches[3], where all keypoints
are detected independently, without any initial knowledge of
how they relate to individual people. As a result, the
algorithm must infer associations after detection, which is
nontrivial in cluttered or ambiguousscenes.

Traditional keypoint grouping strategies often use heuristic
rules such as proximity-based association[4]or learned
pairwise affinity fields[5], which predict how likely two
keypoints belong to the same person. However, these
methods tend to perform poorly in complex scenes where
people are close together, overlap, or occlude each other, as
the association logic becomesunreliable.

To address this issue, we propose a novel keypoint
grouping strategy that eliminates the need for explicit
keypoint association steps. Instead of matching keypoints
through post-hoc logic, our method directly embeds the
spatial configuration of a person’s full body pose into a 34-
dimensional (34D) identity vector. During training, all
keypointsof a single person are supervised to share this same

identity vector, such that at inference time, each predicted
keypoint is accompanied by a 34D vector. By comparing
these vectors, we can implicitly group keypoints that belong
to the same individual based on their similarity, greatly
simplifying and improving the robustness of the grouping
process.

Our architecture is built around a combination of hourgalss
and transformer encoder-decoder framework, which is
particularly well-suited for capturing global spatial
relationships and modeling complex dependencies between
keypoints. We design a dual branch structure: one branch
processes rich image features extracted from a backbone,
while the other branch focuses on a keypoint presence
heatmap, which indicates the probable locations of various
joints. This dual-branch design enables the network to
simultaneously reason about where keypoints are likely to
occur and how they relate to each other spatially, enhancing
both localization accuracy and association reliability.

In the post-processing stage, our approach avoids complex
optimization or matching algorithms. Instead, it relies on
simple thresholding to filter out low confidence keypoints,
followed by vector similarity-based grouping, where
keypoints with similar 34D identity vectors are clustered
together. This leads to a more efficient and robust pipeline
that performs well even in challenging scenarios involving
occlusions or dense crowds.

Overall, ourmethod represents a significant departure from
traditional grouping paradigms, offering a streamlined and
more reliable solution to the multi-person pose estimation
problem.

Il. RELATEDWORK
A. Top-Down approach

Top-down approaches to multi-person pose estimation,
follow a two-stage pipeline. First, they detect individual
persons using an object detector like Faster R-CNN [6] or
YOLO [7]. Then, for each detected bounding box, they crop
the region and perform single-person pose estimation within
that localized area[8]. This decoupling of person detection
and keypoint estimation often results in high localization
accuracy, since the model only needs to focus on one person
atatime. However, this approach hasseveraldrawbacks [9],
[10]. Most notably, it is computationally expensive, as the
pose estimation model must be run separately for each
detected person, leading to increased inference time,
especially in crowded scenes. Furthermore, top-down
methodsare prone to errors in scenarios involving close-body
interactionsor strong occlusions, where bounding boxes may
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significantly overlap or miss body parts that lie outside the
detected region.

B. Bottom-Up approach

In contrast, bottom-up approaches [3] attempt to detect all
body keypointsin the image independently of person identity.
After keypointsare detected, a second stage groups them into
individual poses, usually by learning pairwise relationships
or proximity patterns. Techniques like associative
embeddingsand partaffinity fields (PAFs) [5] are commonly
used to infer which keypointsbelong together. While bottom-
up methodsare typically fasterand more scalable in crowded
scenes, since the network only needs a single forward pass
regardless of the numberof people, theirgrouping stage relies
heavily on local heuristics or spatial continuity assumptions.
As aresult, they may failundersevere occlusion, overlapping
individuals, or complex body configurations where spatial
cues are ambiguous or misleading.

To overcome the limitations of both paradigms,
transformer-based approaches [11], [12], [13], have recently
gained attention in the pose estimation community. By
leveraging the self-attention mechanism, transformers are
capable of modeling global context and long-range
dependencies between body parts. This enables more holistic
reasoning about human pose structure, even when parts are
spatially distant or occluded. For instance, PoseFormer [14]
applies transformer encoders to learn relationships between
jointsover time for video or across the body forstatic images,
allowing it to infer missing or uncertain keypoints based on
contextual cues. However, despite the powerful modeling
capabilities of transformers, these methods still require a
separate grouping mechanism, either implicitly or explicitly,
to associate detected keypoints with individual persons.

Among bottom-up methods, associative embedding [15] is
a popular technique that assigns each detected keypoint a
low-dimensional tag based on its type (e.g., left wrist, right
ankle). Grouping is then performed by clustering these tags,
under the assumption that keypoints with similar tags belong
to the same person. While effective to some extent, this
approach only encodes local identity information and does
not model the full-body configuration.

C. Our bottom-up strategy

In contrast, our method introduces a fundamentally different
formulation of the grouping problem. Instead of assigning
independenttagsorrelying on pairwise affinities, we propose
to embed the entire spatial configuration of a person’s pose
into a single, unified vectorrepresentation. Specifically, each
keypoint is predicted along with a shared 34-dimensional
identity vector that captures the holistic structure of the
person's pose. This richer encoding enables more robust
grouping based on high-dimensionalsimilarity and allows the
network to implicitly learn pose-level representations. As a
result, our approach simplifies the grouping process,
improves robustness to occlusion and overlap, and unifies
detection and association in a single coherent framework.

I1l. METHOD
A. Overview

Our proposed approach aims to perform multi-person pose
estimation in a bottom-up mannerwhile eliminating the need
foran explicit grouping stage. Given a single RGB image, the
model outputs a set of 2D human keypoints, grouped by
individual person identities. The core idea is to predict, for
each spatial location, not only whether a keypoint exists but
also a compact vector representation of an entire pose
configuration. This allows grouping to be performed
implicitly through vector similarity, rather than explicit
association logic or heuristic clustering.

The overall architecture comprises three major
components. A feature extractor, reasonable forencoding the
input image into a compact feature representation, a stacked
hourglass[16] block as keypoint detector which predicts a
per-pixel heatmap indicating the likelihood of any keypoint
being present and an embedding-based grouping

transformer[17], which generates a dense spatialfield of 34-
dimensionalvectors, where each vectorencodesthe full pose
layout of a person.

Together, these components form an efficient and fully
differentiable pipeline capable of localizing and grouping
keypointssimultaneously depicted in Figure 1.

Figure 1. Proposed network for multi-person pose estimation.

B. Feature extraction

We employ either MobileNetV3 (CNN-based)[18] or
MaxViT (Transformer-based)[19] backbones due to their
favorable balance of speed and accuracy. The inputimage! €
RA*W>3 js processed into a upsampled feature map F €
RH>W'*C \where H' =H xs, and W’ = W x s, and C is
the number of output channels. The upsampling factor s is
determined by the specific architecture and is typically set to
2. Convolutions, depthwise seperable filters, and
normalization layers ensure that the feature representation
retains both spatial resolution and semantic richness.

C. Keypoint Presence Estimation

We use a stacked hourglass network [16] as a dense pixel-
wise estimator to produce a keypoint presence heatmap H €
RH'*W'<1 The network consists of multiple hourglass blocks
that iteratively refine the heatmap by capturing multi-scale
spatial dependencies. The output heatmap indicates the
likelihood of any keypoint being present at each pixel
location, allowing us to identify candidate keypoint positions.
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D. Embedding-based grouping transformer

The core of our method is the grouping transformer that
learns the explicit association target vectors as depicted in
Figure 2, which transforms the task of keypoint association
into a problem of vector similarity. It takesthe concatenated
tensor [F; H] € RE*257x64x64 ga5input, where F is the feature
map and H isthe keypoint presence heatmap. The transformer
processes this input through self-attention layers, allowing it
to learn contextual relationships between different spatial
locationsand keypoints.
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Figure 2. Demonstration of Ground Truth. Body joint locations in
pixel space fall in (x,y) € [0,64).

At each spatiallocation, it outputsa pose embeddingvector:
v=[x;,y,,%5 ., X17,Y1,] € R3* )]

Each (x;,y;) € [0,64) encodes the 2D coordinates and
visibility of the i*" keypoint. During training, all keypoints
that belong to the same person are forced to predict the same
34D vector, enabling implicit grouping based on vector
proximity.

This formulation effectively builds a spatial library of
human poses. With 34 degrees of freedom and 64 discrete
positions per coordinate, the latent space supports up to
643* = 22°* unique pose configurations, allowing the model
to represent a vast range of human posesand sizes.

IV. POST-PROCESSING AND OCCLUSION HANDLING

A. Keypointgrouping
The keypoint heatmap H is thresholded to identify active
pixels, which are considered candidate keypoint locations.
For each active pixel (i, j), we retrieve the corresponding 34D
vector v;; from the output of the grouping transformer. This
vector serves as the identity signature for the person
associated with that keypoint. We then perform grouping by
computing the Euclidean distance between these vectors.
Keypoints are assigned to the same person if their vectors fall
within a fixed similarity threshold.

This method avoids reliance on handcrafted grouping logic
such as PAFs [5] or associative embeddings [20], and
naturally supportsarbitrary numbers of people and poses.

B. Occlusion recovery

In scenes with occlusion or partialvisibility, multiple vectors
from nearby locations may redundantly represent the same
person. To recover missing keypoints, we apply mean
pooling across all vectors assigned to the same identity. This
aggregates distributed evidence and allows the modelto infer
occluded joints even when they are not directly detected.

V. RESULTS

To comprehensively  evaluate the  effectiveness,
generalization, and efficiency of our proposed method, we
conduct a series of experiments on the COCO Keypoints
dataset. We report both quantitative and qualitative results,
followed by detailed ablation studies and a discussion on the
method’s limitations, novelty,and practicalsignificance.

A. Evaluation criteria and dataset

We use the COCO keypoint detection challenge dataset [21],
a standard benchmark in human pose estimation. The dataset
includes over 118K images and 250K person instances
labeled with 17 keypoints per person. The data presents
diverse challenges such as occlusion, scale variation, and
crowding. We follow the standard train/val/test split, using
the train2017 set (approximately 57K images) for training
andval2017 forvalidation andablation studies. We adopt the
Average Precision (AP) metrics as used in the COCO
evaluation protocol,namely AP®° , AP”> | APM and APL.

B. Experimental setup
All models are implemented in PyTorch and trained on an
NVIDIA T4 GPU (16GB). We utilize thetrain2017 set (~57K
images) fortraining and val2017 forvalidation and ablation.
The training configuration is as follows:
e Backbone: MobileNetV3 and MaxVit
e Resolution: Upsampled to 64 x 64 for detection
and regression
e  Optimizer: AdamW
e Learning rate: Adaptive, initialized at 3 x 1073,
boundedin [1 x 107%,3 x 1073]
e Weightdecay: 1 x 1075

C. Loss functions

We utilized 3 different loss functions, each focused on a
specific objective. Asymmetric loss: to handle the spatial
imbalance, Chamfer distance: to supervise the keypoint
presence and location on the heatmap, MSE loss: to
encouragesaccurate regression of embeddingvectors.
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In the end, we weight the losses by learnable parameters
ranging between 0.01 and 5 as follows:

AILHeatmap + /12LGroup (5)
A+ 2,

Loss =

At inference, heatmap threshold of 0.8 identifies candidate
keypoints. Associated 34D identity vectors are used to group
keypoints without any external human detection or proposal
stages.

D. Quantitative results
Table 1. Comparison on the COCO validation set.

Table 2 Ablation study results

Configuration Backbone AP

with both MobileNetV3[18] 48.9
with both MaxVit[19] 68.8
w/o both (only 1x1 conv head) MobileNetV3[18] 11.4
w/o both (only 1x1 conv head) MaxVit[19] 17.1
w/o hourglass for heatmap MobileNetV3[18] 43.1
w/o hourglass for heatmap MaxVit[19] 57.7
w/o transformer in grouping MobileNetV3[18] 56.0
w/o transformer in grouping MaxVit[19] 61.2

Method Parameters(M) AP AP75 APM AP
Multiposenet [22] - 86.3  76.6 65.0 76.3
Integral Pose 45.0 88.2 748 63.9 740
Regression[23]

SimpleBaselines[24] 68.6 91.9 8I.1 70.3 80.0
HRNet-W32[25] 28.5 90.5 81.9 70.8  81.0
HRNet-W48[25] 63.6 90.6  82.2 71.5  81.8
TokenPose[26] 20.8 90.0 81.5 71.8  82.4
TransPose[27] 17.5 90.1  82.1 71.9  82.8
HRNet-Lite[28] 14.5 89.7  80.9 70.3  80.7
OpenPose[29] 52.3 852 713 62.2  70.1
Realtime Multi- 53.8 69.0 35.6 346 43.6
Person Pose

Estimation[30]

Ours 8.6 60.5 52.3 457 524
[MobileNetV3[18]]

Ours [MaxVit[19]] 19.1 86.5 74.7 65.4 749

The MaxVit-based model achieves AP scores close to larger
models like HRNet-W32, while using fewer parameters
(19.1M vs. 28.5M). The MobileNetV3 variant is significantly
lighter (8.6M) and better suited for edge devices, trading off
accuracy for speed and efficiency. The results confirm the
effectiveness of our vector regression-based grouping, even

underocclusions, without requiring explicit human detectors.

E. Qualitative Results
As illustrated in Figure 3, our modelsuccessfully detectsand
groups keypoints in diverse and challenging scenes. Even in

case of overlappingpeople, the shared identity vectorsenable
accurate association.

Figure 3. Qualitative results on COCO test set

F. Ablationstudy
We analyze the contributions of key architectural components
by progressively removing them and measuring the resulting
drop in AP asshown in Table 2.

The ablation study shows that the hourglass network
improves spatialprecision in heatmapsand the stacked vision
transformer module, enhances keypoint association
particularly under partial occlusion. Removing either
component leadsto a noticeable performance drop, validating
our design choices.

G. Limitationsand disadvantages

While our model is lightweight and efficient, it may struggle
with extreme occlusions or unusual poses, similar to other
state-of-the-art methods. It struggles when individuals are
small or distant. The fixed threshold might not generalize
well across all contexts, therefore adaptive strategies could
help.

VI. CONCLUSION

Our proposed method introduces a bottom-up pose estimation
framework based on shared 34D identity vectors, supervised
through a transformer-based regression mechanism. By
combining a lightweight backbone (MobileNetV3 or
MaxVit), a heatmap Hourglass network and a transformer
encoder-decoder for embedding-based grouping. We achieve
competitive performance on COCO with reduced
computational cost and no reliance on external detection
proposals.

A. Scientificnovelty

Unlike prior work that relies heavily on person-level
detection followed by keypoint regression, our method
introduces a shared identity vector approach for keypoint
grouping, proposes a loss-weighted hybrid training objective
combining Chamfer distance and asymmetric focal loss and
uses a transformer-based grouping module in a bottom-up
setting.

B. Practical significance

The lightweight and modular nature of our system makes it
suitable for real-world applications such as real-time human
pose estimation in video surveillance, augmented reality
systems requiring efficient keypoint tracking and robotics
applications for human-robot interaction. The absence of
bounding-box detectors and the ability to work directly on
full images enhancesrobustnessand deployment flexibility.
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