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Abstract—The paper considers the problem of signal shape 

transformation during the wave interaction with a continuous 

nonlinear medium. The proposed method, based on varying the 
characteristics of a wave in a linear medium, does not lead to 

the appearance of secular terms, thereby providing a uniform 

approximation to the exact solution. It was found that during 

the propagation of the wave, the change in the time delay of the 

signal is most significant. The influence of the nonlinear 
medium on the amplitude characteristics of the components of 

the electromagnetic field is a magnitude of the second order of 

smallness, and in the first approximation this influence can be 

neglected. The results are of great fundamental and applied 

importance for the creation of radiation with desired 
characteristics (in particular, the expansion of the signal 

spectrum) and the study of the structure of various media 

based on nonlinear effects (for example, pathologies of 

biological tissues at an early stage of their formation). 

 

Keywords—nonlinear media, wave propagation, parameter 

variation method. 
 

I. INTRODUCTION 

The study of nonlinear media is an inevitable stage in the 

development of science. Every medium exhibits the 

nonlinear properties when exposed to a certain influence. In 

particular, the saturation effect is nonlinear, when at high 

input signal levels the system, due to the limited number of 

charge carriers, can no longer generate a proportional input 

signal. At extremely low levels of exposure, it is important 

to take into account the internal electromagnetic field, which  

also disrupts the linearity of the medium response. 

Therefore, at a  qualitative level, the environment can be 

considered as linear only under the condition 10 EE , 

where 0,EE  are characteristic values of external and 

internal fields [1]. In reality, however, more complicated 

situation occurs.  

Due to the development of technical possibilities for the 

creation of generators of high-power and ultra -wideband 

radiation, the tasks of describing the propagation of 

radiation in a continuous nonlinear medium have become 

relevant. Among them, we highlight the problem of using 

the effects that appear during the interaction of radiation 

with biological tissues for the timely diagnosis of various 
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diseases. [2,3]. Another class of inverse problems is the 

problem of signal optimization due to enrichment of its 

spectrum during propagation in a nonlinear medium, which 

is still limited to the case of location of nonlinear inclusions 

[4]. 

The analysis of signal transformation in nonlinear media 

are reduced to solving nonlinear partial differential 

equations, the theory of which is practically absent with the 

exception of the simplest cases [5]. Therefore, when 

describing processes in a nonlinear medium, a specific 

analogue of the complex amplitude method dominates. It is 

based on an estimate of the signal pa rameters at frequencies 

multiple of the fundamental harmonic, which are selected by 

the type of nonlinear characteristic and are based on 

physical representations [1]. The imperfection of this 

approach is visible, for example, in the case of irradiation of  

a semiconductor diode [6]. Most of the existing approaches 

are an attempt to solve homogeneous equations, i.e., a  

description of the possible types of oscillations, the specific 

combination of which is determined by the source type. This 

interpretation is possible for linear equations, but in the case 

of nonlinear media, for which the superposition principle is 

not valid, it raises serious doubts. 

In this paper, an attempt is made to study the problem of 

the propagation of radiation from a dipole source in  a 

nonlinear medium, the solution of which is free from the 

above-mentioned shortcomings.  

 

II. LINEAR MEDIUM CASE 

Let us consider the problem of electromagnetic wave 

propagation in a nonlinear medium, taking into account the 

vector structure of the electric a nd magnetic fields, as well 

as the most general dependence on three spatial and 

temporal variables ( r


 and t ). We will start from the system 

of Maxwell's equations for a homogeneous non-conducting 

medium in differential form, which have the form 
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where are the densities of the external current j


 and charge 

  characterize the sources of the field, and absolute 

dielectric and magnetic permittivities a , a  clearly do not 

depend on r


 and t . Before considering the solution of 
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Maxwell's equations taking into account the nonlinear 

properties of the medium, let us dwell on the case of a linear 

non-conductive medium. As a radiation source, we choose a  

dipole with a constant current distribution along the 

coordinate z  and arbitrary time dependence )(t , 

)()()()( 000 zzyyxxtjz −−−= . (2) 

 

We consider that there are no fields, currents and charges 

at the initial moment of time. We will look for a solution to 

system (1) by the integral transform method, applying to the 

equations the Laplace transform on the time variable and the 

three-dimensional Fourier transform on spatial variables in 

the Cartesian coordinate system. For further calculations, it 

is convenient instead of the components of the electric field 

strength vector ( )trE ,


 consider the components of the 

electric induction vector ( )trD ,


, ( ) ( )trEtrD a ,,
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= . The 

solution of system (1) is 
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where 

aa

v


=
1

 is wave propaga tion velocity in linear 

medium, ( ) ( ) ( )20
2

0
2

0 zzyyxxR −+−+−= , 

( ) ( ) =

t

dt

0

,   – Heaviside step function. 

Summing up the squares of the components of the vectors 

( )trD ,


 and ( )trH ,


, we write the expression for the energy 

density in the spherical coordinate system (up to multiplier 

a21 ) 
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Here all functions have the argument ( )vRt −  omitted, 

and the prime means the derivative with respect to the entire 

argument.  

III. PARAMETERS VARIATION METHOD 

To solve Maxwell's equations in the case of a nonlinear 

medium, the parameters variation method is applicable [7]. 

As the initial form we choose solution (3) of system (1). We 

will vary the amplitude and time delay for the field 

components and introduce additive components into 

consideration. As a result, the solution to the equations 

system (1) for a nonlinear dependence of the permittivity on  

the applied field magnitude will be sought in the form 
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The functions ),(6,5,4,2,1 trm


 have the physical meaning 

as the coefficient of wave transmission in a nonlinear 

medium. The function ),( tr


  describes the wave delay 

during propagation due to a change in its phase velocity by a 

nonlinear medium, it can be related to the equiva lent 

refractive index ( )trn ,


 for a nonlinear medium by the 

relation 
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The functions ),(6,5,4,2,1 trs


 represent secondary 

radiation, the propagation direction of which does not 

coincide with the primary wave. We emphasize that the 

relationship between these functions in (4) is quite arbitrary, 
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but reflects the basic ideas about changes in wave 

characteristics during propagation in a nonlinear 

homogeneous medium and hopes for an adequate 

description of processes in a nonlinear medium. 

To find unknown functions ),(6,5,4,2,1 txm , ),( tx  and 

),(6,5,4,2,1 txs , it is necessary to substitute expressions (4) 

into system (1), written out for each component, where the 

permittivity will depend on the magnitude of the applied 

field, and the dipole (2) is the source of the field, as in the 

case of a linear medium. 

To simplify expressions, we will omit the arguments of 

the functions ( )),( tr
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over the entire argument. For example, write the first 

equation of system (1) after substitution 
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Equating the coefficients at  , we obtain a system of 

equations 
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Since the exact solution of this system is impossible due 

to the excess of the number of unknowns over the number of 

equations, we will solve it assuming a small difference in 

the signal from the case of a linear medium. Therefore, like 

the geometric optics method, we will consider phase 

relations to be priority, and approximately we will take 

Rmi = 41  and 0=is . Then the first two equations of 

system (7) follow 1=t , and from the latter 

 

aazyx =++ 222
. (8) 

 

The form of this equation coincides with the well-known 

eikonal equation in the approximation of geometric optics, 

but an important difference is the dependence a  on delay 

( )tr ,


 . In a spherical coordinate system, this equation 

would look like 
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where the independence of the function   from the 

azimuthal angle   is taken into account for symmetry 

reasons, 0= . 

We will consider the case when the nonlinear dependence 

is determined by the level of energy acting on the medium, 

i.e. 
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where v  is wave propagation velocity in background linea r 

medium,   is a  small numerical parameter characterizing 

the influence of a nonlinear characteristic f .  

IV. CALCULATING THE FUNCTION ( )tr ,


  

A. Plane wave approximation 

Even in the approximate form of equation (8) or (9) with 

the right-hand side of the form (10), the solution to the 

problem of the wave phase dependence in a nonlinear 

medium is apparently impossible. Further methods of 

simplifying the problem are needed, in which a qualitative 

analysis of the wave behavior is possible. One of them, 

describing the propagation of a wave in the far field, is the 

"plane wave approximation". It consists of neglecting the 

dependence of the permittivity on the coordinates R ,  , 

and taking into account only the dependence on the function  

( )tr ,


 . The rationale for this approximation is the analogy 

with the propagation of radiation in a linear medium, when 

at a sufficient distance from the emitter the wave can be 

considered as plane, neglecting the decrease in amplitude 

with distance and taking into account only the phase 

relationships. Then the problem of the first-order partial 

differential equation (8) solving, where 

( )( )( )+= fa 10 , allows for an exact solution. 

Let's make a replacement 
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Then the equation is transformed to the form [8] 

1222 =++ zyx uuu . For this nonlinear equation with constant 

coefficients, the complete integral is known 
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where 12
3

2
2

2
1 =++ ССС  [8]. However, since the same 

equation describes the process of radiation propagation in a 

linear homogeneous medium, the desired pa rticular solution 

has the form Rvtu −= . The solution of the original 

equation (8) is obtained as the solution of the transcendental 

equation (11) with respect to the variable   by the found 

value u . 

B. Direct decomposition method 

Let us apply the direct decomposition method to equation 

(9). This method gives correct results only at a  small 

distance from the source, but allows for a more accurate 

account of the structure of the dependence (10). We will 

look for a solution in the form of an expansion in a small 

parameter  : ...10 ++= . In the zero approximation, 
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Neglecting terms of the second and higher orders of 

smallness, we obtain an equation for the first approximation  
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By integrating this ordinary differential equation, we obtain 

an expression for the function 1  
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C. Pfaff's method 

Let us write equation (9) in a form resolved with respect 

to one of the derivatives 
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that 
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we receive 
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There is sufficient arbitrariness in the choice of functions 

 ,, , but they must satisfy the conditions 

 

( ) ( ) 0,,
2

=−+



−




RR

RR
aa . (17) 

 

It has been proven [9] that such functions always exist. 

We assume that the function   corresponding to the polar 

angle   does not depend on R . Then, integrating the first 

condition (17) with respect to the variable R , we obtain the 

integral equation  

 

( ) ( ) −−=

R

aa dRRRt

0

2
,, , (18) 

 

which establishes the connection of the function   with the 

other introduced functions. The validity of the established 

type for function   and in fact for the desired function   

confirmed by particular cases. For example, the complete 

integral of the equation ( )Rf
R

R =+ 
2

2

2 1
 has the form [8] 
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( ) ( ) ( ) 2

0

2
11, CdRRCRfCR

R

+−=  . 

 

In addition, the function obtained from equation (18) will 

satisfy the natural boundary condition t
R

=
=0

. 

Let's consider the left part of the second condition (17) 
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So that at different iu  these expressions had a common 

factor describing the dependence on the variable R , need to  

require the function dependencies  ,,  by variable 

321 uuuu ++= . Then 
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After substituting these functions into equation (16), we 

have an extremely simple equation in total differentials 

0=du , the general solution of which ( ) 0= u , where   

is arbitrary function. Now, to obtain the general integral, it is 

necessary to finally decide on the choice of functions 

( ) ( )uRu ,, , express the variable u  from equations (17) 

through the original variables ,,R  and, substituting into 

the function  , obtain the general integral of equation (13). 

The proposed method for obtaining a solution cannot be 

fully implemented due to the complex dependence (18) of 

the function   from u . In addition, to specify the function 

  a  boundary condition of the form ( )R=
= 0

 is 

required. It cannot be found. Therefore, to determine the 

wave phase characteristic in a nonlinear medium, we use the 

limiting cases of a linear and quasilinear medium. In this 

case, for simplicity, we use the first approximation of the 

integral equation (18), in which in the integrand 

 

vRt −== 0 . (19) 

 

For a linear medium, the nonlinear dependence (10) 

becomes a constant 
2

1

v
aa = , and in order to obtain 

dependence (18), it is necessary to demand 0
0

=
=

. 

Comparing (18) with the result obtained in the small 

perturbation approximation (12) 

 

( ) ( ) 


−−−+−

vtR

fdR
vv

R
tdRRvf

v
t

00

2
0

2
1

1
 

 

we are convinced that the contribution of the function   is 

of the second order of smallness, and one can use the case 

0 . 

To find the function ( )u , we use the last of the equations 

(15), which can be rewritten 

 

( ) ( )

.1
1

,,

2

1

0
2













+=


















−


































+








−

−=




−



uuRuu

RR

dR

u

u

aa
a

R

aa
 

 

Taking into account the approximations made, we can 

also talk about the insignificance of the ef fect of mutual 

dependence of the angular distribution and phase 

characteristics of the wave in a nonlinear medium. Thus, in 

the first approximation, the phase characteristic can be 

calculated using the formula  

 

( )  −=−+−=

R

aa

R

dRtdRfvRt
v

t

00

1
1

. (20) 

V. PHASE DEPENDENCE MODELING AND RESULTS ANALYSIS 

The main obstacle to the numerical implementation of 

various methods for determining the signal delay during the 

propagation of radiation in a nonlinear medium is its 

dependence on the magnitude of the field (or its energy 

density) along the entire propagation path from the source to  

the receiving point. At the same time, the problem of 

correctly finding the value of the characteristics of the 

electromagnetic field near the source is a difficult task 

associated with the field singularity in point source at 

0→R . Thus, the values of the fields (3) in the immediate 

vicinity of the emitter are incorrect, and a more detailed 

analysis of the magnitude of these fields is required here. An 

attempt to solve this problem was presented in [10]. The 

singularity-free expression for the energy density is 
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where h  and a  are length and the cross-section radius of a 

small cylindrical radiator corresponding to a dipole (2). 

Numerical modeling of the wave phase characteristic and 
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the equivalent refractive medium index (5) was carried out 

based on expressions (20) and (21). The source of influence 

was a cylindrical emitter with a time dependence in the 

Gaussian pulse form 

 

( ) ( ) ( )0

2
0 sin ttAet

tt
−=

−− , 

 

where  5.0=A , GHz20= , f= 2 , GHz4=f , 

ns13.00 =t , m05.0=h , m005.0=a , 0001.0= . Fig. 1 

shows the increment of the equivalent refractive index 1−n  

from (5) due to the nonlinearity of the medium. 

 
Fig.1. Increment of the equivalent refractive index in the 

Gaussian pulse case. 

The simulation showed that due to the rapid decrease in 

wave energy density in the medium (according to (21), in 

the near zone of the emitter its decrease 
4

1~ R ) already at a  

short distance from the emitter, the amplitude of the wave 

becomes insufficient for the response of the nonlinear 

medium to the effect. This effect prevents the accumulat ion  

of nonlinear effects due to the multiple interaction of the 

wave with the medium. Therefore, taking into account the 

sphericity of the wave, the occurrence of shock waves is 

excluded even in the absence of dispersion. For a 

mathematical description of the propagation process, we can  

limit ourselves to single scattering approximations, which 

generalize the Born approximation. 

VI. AMPLITUDE CHARACTERISTICS OF THE 

ELECTROMAGNETIC FIELD 

Since the direct solution of the system of equations for the 

amplitude functions ( )trmi ,


, 6..2,1=i  obtained by equating 

the coefficients at ( )( )tr ,


  in (6) and other Maxwell’s 

system equations, impossible, first of all, due to the extreme 

bulkiness of its recording, we will undertake certain 

simplifications. First of all, let's stop trying to find functions 

( )trsi ,


, characterizing the scattered field, setting them equal 

to zero. Let us write the system of equations (1) more 

compactly without directly calculating the derivatives:  
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The last equation implies the equality 54 mm = , and from 

the first two – 21 mm = , i.e. the symmetry of the problem 

with respect to transverse coordinates yx,  is physically 

obvious, therefore, only 3 equations out of 6 will be 

informative. Moreover, we can equate the arguments of the 

same derivatives on the left and right, since in the linear 

case all amplitude functions are equal, and possible 

additional arbitrary functions (“constants” with respect to 

the arguments of the derivatives used) will therefore be 

equal to zero. It is also convenient to switch to a cylindrical 

coordinate system. 

As a result, the system of equations (22) is transformed to 

the form 
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We will solve the system using the method of successive 

approximations. We will reduce equations (23)-(25) to 

integral form. Let us single out the linear d'Alembert 

operator in them. We integrate both parts of (24) with 

respect to the variable t  and take into account 
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Likewise 
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The last terms on the right-hand sides can be neglected as 

a first approximation, since they represent quantities of the 

order 2 . As a result of solving the one-dimensional wave 

equation, we arrive at a  system of integro-differential 

equations 
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which is supposed to be solved iteratively. 

Note that, since the resulting system of equations does not  

explicitly include a nonlinear characteristic, its solution will 

lead to functions corresponding to the linear case. It follows 

that the influence of the nonlinear medium on the amplitude 

characteristics of the components of the electromagnetic 

field is a magnitude of the second order of smallness, and in 

the first approximation this influence can be neglected. 

VII. CONCLUSION 

The problem setting methodology proposed in this article 

differs from the traditional one in two aspects: 1) a wave 

from a specific source in the form of a dipole is investigated; 

2) the solution is carried out for a signal with an arbitrary 

time dependence, as well as the general type of non-linear 

characteristic of the medium. The solution to this problem 

and subsequent numerical modeling made it possible to 

identify the general patterns of waveform transformation by  

nonlinear scatterers and to analyze the patterns of wave 

distortion depending on the shape of the original signal and 

the type of nonlinear characteristic. 

The method of variation of field parameters of a linear 

problem is applied to the solution of a system of Maxwell’s 

equations for a nonlinear medium. The elementarity of the 

radiation source used makes it possible to determine 

unknown functions from the condition of equality of 

coefficients for the  -function, its derivative and 

antiderivative.  

The nonlinear medium has the greatest influence on the 

wave phase. Since even in an approximate form the exact 

solution of this equation, which has an analogy with the 

eikonal equation of geometric optics, is apparently 

impossible, several methods of simplifying the problem are 

considered (the “plane wave approximation”, the direct 

expansion method, the Pfaff method). 

Despite the complexity of the problem, which leads to 

inevitable approximations, the approach used allows us to 

identify the effects of accumulation of changes in the 

amplitude, phase and polarization characteristics of a signal 

during wave propagation in a nonlinear medium. This is 

what makes it stand out from classical methods based on the 

use of the small disturbance method, the results of which are 

valid only in the near zone of the source, where the structure 

of the influencing signal itself requires correction.  
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