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Electromagnetic waves propagation in nonlinear
media with vector field structure considering

D. V. Losev, D. S. Bardashov, A. G. Bykov

Abstract—The paper considers the problem of signal shape
transformation during the wave interaction with a continuous
nonlinear medium. The proposed method, based on varying the
characteristics of a wave in a linear medium, does not lead to
the appearance of secular terms, thereby providing a uniform
approximation to the exact solution. It was found that during
the propagation of the wave, the change in the time delay of the
signal is most significant. The influence of the nonlinear
medium on the amplitude characteristics of the components of
the electromagnetic field is a magnitude of the second order of
smallness, and in the first approximation this influence can be
neglected. The results are of great fundamental and applied
importance for the creation of radiation with desired
characteristics (in particular, the expansion of the signal
spectrum) and the study of the structure of various media
based on nonlinear effects (for example, pathologies of
biological tissues at an early stage of their formation).

Keywords—nonlinear media, wave propagation, parameter
variation method.

I. INTRODUCTION

The study of nonlinear media is an inevitable stage in the
development of science. Every medium exhibits the
nonlinear properties when exposed to a certain influence. In
particular, the saturation effect is nonlinear, when at high
input signal levels the system, due to the limited number of
charge carriers, can no longer generate a proportional input
signal. At extremely low levels of exposure, it is important
to take into accountthe internal electromagnetic field, which
also disrupts the linearity of the medium response.
Therefore, at a qualitative level, the environment can be
considered as linear only under the condition E/Eq <<1,

where E,E, are characteristic values of external and

internal fields [1]. In reality, however, more complicated
situation occurs.

Due to the development of technical possibilities for the
creation of generators of high-power and ultra-wideband
radiation, the tasks of describing the propagation of
radiation in a continuous nonlinear medium have become
relevant. Among them, we highlight the problem of using
the effects that appear during the interaction of radiation
with biological tissues for the timely diagnosis of various
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diseases. [2,3]. Another class of inverse problems is the
problem of signal optimization due to enrichment of its
spectrum during propagation in a nonlinear medium, which
is still limited to the case of location of nonlinear inclusions
[4].

The analysis of signal transformation in nonlinear media
are reduced to solving nonlinear partial differential
equations, the theory of which is practically absent with the
exception of the simplest cases [5]. Therefore, when
describing processes in a nonlinear medium, a specific
analogue of the complex amplitude method dominates. It is
based onanestimate of the signal parametersat frequencies
multiple of the fundamentalharmonic, which are selected by
the type of nonlinear characteristic and are based on
physical representations [1]. The imperfection of this
approach is visible, for example, in the case of irradiation of
a semiconductor diode [6]. Most of the existing approaches
are an attempt to solve homogeneous equations, ie., a
description of the possible types of oscillations, the specific
combination of which is determined by the source type. This
interpretation is possible for linear equations, but in the case
of nonlinear media, for which the superposition principle is
notvalid, it raises serious doubts.

In this paper, an attempt is made to study the problem of
the propagation of radiation from a dipole source in a
nonlinear medium, the solution of which is free from the
above-mentioned shortcomings.

1. LINEARMEDIUM CASE

Let us consider the problem of electromagnetic wave
propagation in a nonlinear medium, taking into account the
vector structure of the electric and magnetic fields, as well
as the most general dependence on three spatial and
temporal variables (F and t). We will start from the system
of Maxwell's equations for a homogeneous non-conducting
medium in differential form, which havethe form

rotH =g, £+, divE=L,
ot €,

oH W
rotE:—uaE, divH =0,

where are the densities of the external current | and charge
p characterize the sources of the field, and absolute
dielectric and magnetic permittivities €5, pa clearly do not
depend on 1 and t. Before considering the solution of
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Maxwell's equations taking into account the nonlinear
properties of the medium, let us dwell on the case of a linear
non-conductive medium. As a radiation source, we choose a
dipole with a constant current distribution along the
coordinate z andarbitrary time dependence o(t),

Jz = 9()8(x=x0)3(y - ¥0)3(2 - 20) - @)

We consider that there are no fields, currents and charges
at the initial moment of time. We will look for a solution to
system (1) by the integral transform method, applyingtothe
equationsthe Laplace transform on the time variable and the
three-dimensional Fourier transform on spatial variables in
the Cartesian coordinate system. For further calculations, it
is convenient instead of the components of the electric field

strength vector E(F,t) consider the components of the
electric induction vector D(F,t), D(F,t)=¢,E(F,t). The
solution of system (1) is

DX(F,t):i q{t—ij(tﬁj , 3)

2 q{t_Rj -
Dy (F.t)= — Vi t=211,
oyoz 47R v
o2 (D[t_SJ R
D,(F.t)=— t-—||-
=27 —am X( vj
()
e A v R
Hefa | ™ 4R V)|
1 . . Lo
where v= is wave propagation velocity in linear
Ve€aHa
medium, R:\/(x—xo)2+(y—y0)2+(z—zo)2 ,

t
®(t)= I(p(r)dt, x — Heaviside step function.
0
Summing up the squares of the components of the vectors

D(F,t) and H(F,t), we write the expression for the energy
density in the spherical coordinate system (up to multiplier

Y2ey)

1
V2

' o
- 5 sinze(%+£+—2) +
(47R) ve VR R
, 2 2
T A +4c0s° 0 £+3 .
vZ VR VR R?

Here all functions have the argument (t—R/v) omitted,

and the prime meansthe derivative with respect to the entire
argument.

Di +DJ +D? + (H§+H§+H§)=

I1l. PARAMETERS VARIATION METHOD

To solve Maxwell's equations in the case of a nonlinear
medium, the parameters variation method is applicable [7].
As the initial form we choose solution (3) of system (1). We
will vary the amplitude and time delay for the field
components and introduce additive components into
consideration. As a result, the solution to the equations
system (1) for a nonlinear dependence of the permittivity on
the applied field magnitude will be sought in the form

[(m (7, Eho(e(F 1))+ s2(F, Ohe (e(F, )]

HX(F,t):%

__9
OX

[(ma (7, thole(F, 1)+ 2 (F, he((F. 1),
Dy (F.t)= ai—; [(ma (7, thole(F, )+ 54 (FOW((F. )] @)

2

Dy (F,1) = -2 [(mg(F, (el 1)+ s5 (F, Oe(e(F. )],

oyoz

01.0)= i) sl )
-t =P (7)) + 55O )

The functions my ; 456(F,t) have the physical meaning

as the coefficient of wave transmission in a nonlinear
medium. The function =(r,t) describes the wave delay
during propagation due to a change in its phase velocity by a
nonlinear medium, it can be related to the equivalent
refractive index n(F,t) for a nonlinear medium by the

relation
(F,t) :t—|L;|n(F,t). (5)

secondary

functions represent

The $12,4,56(F1)
radiation, the propagation direction of which does not
coincide with the primary wave. We emphasize that the
relationship between these functions in (4) is quite arbitrary,
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but reflects the basic ideas about changes in wave
characteristics during propagation in a nonlinear
homogeneous medium and hopes for an adequate
description of processes in a nonlinear medium.

To find unknown functions my ; 456(x,t), t(xt) and
S12.45,6(X1), it is necessary to substitute expressions (4)
into system (1), written out for each component, where the
permittivity will depend on the magnitude of the applied
field, and the dipole (2) is the source of the field, as in the

caseof a linear medium.
To simplify expressions, we will omit the arguments of

the functions ®(t(F,1)), o(t(F,t)), x(t(F.1)), 8(x(F.1)),
M2 a56(F1), S12456(F,t), ©(r,t) and use subscripts to

denote the corresponding derivatives, for example,
2
om . . N
Py Ea—(p, My =—-. Designation ¢' means a derivative
OX ot

over the entire argument. For example, write the first
equation of system (1) aftersubstitution

(mZZ(P + Moz 0Ty + Moy @'t + M@ 1T, +MyP'Ty; +Spy )X +
+ (mZZ‘P +M@'t; +5p, )‘:XS + (mZX(P +Mo@'Ty + Sy )1726 +
+(Map+ )8 + (Mo + 5 Jr 1,8 =
(m4xth) + Myt PTx + Myt PT7 +Maxg Tt + Myt 91T, +
+ Mgt @y + My @'T T + My PTog + Mgy @17, +
+ Mg Ty T, Te + M T T, + My@ T Ty +
+ Mgy Tzt + MgQ Ty Tap + MgQT st + Saat )X + (m4th)":x +
+ Mg PT 7Ty + Mygz PTHTy + My@ T T, Ty + MgQT 5Ty +
+S420Tx + Mgy @T4T, ++HMgeQTiT, + M@ Ty T T, +
+MyQTyy T, + m4(\[”‘:tftx)6 +MyQTiT, 7,0

(6)

Equating the coefficients at &', we obtain a system of
equations

(mZ(P +S2 )tsz =MyPTiT, Ty,
(ml(P+ S'l)l'zry =M5QTiT, Ty, )

—(myp+ 52)T>2< —(mo+ 31)T§ =

2 2 2
= Mg(T4T; _Hasa(mG(PTt + 56Tt )

Since the exact solution of this system is impossible due
to the excess of the numberof unknowns over the number of
equations, we will solve it assuming a small difference in
the signal from the case of a linear medium. Therefore, like
the geometric optics method, we will consider phase
relations to be priority, and approximately we will take
m; =1/4xR and s;=0. Then the first two equations of

system (7) follow t; =1, and from the latter

r§ +r§, +r§ =HgaEa. 8)

The form of this equation coincides with the well-known
eikonal equation in the approximation of geometric optics,
but an important difference is the dependence e, on delay

to(F,t). In a spherical coordinate system, this equation
would look like

R2t2 + 13 = R% e, , ©)

where the independence of the function <t from the
azimuthal angle ¢ is taken into account for symmetry

reasons, t, = 0.

We will consider the case when the nonlinear dependence
is determined by the level of energy acting on the medium,
ie.

1 X ()’ (0] D 2
22

Ua€q = — 1+Yf sin 9(_4’._.’__] +
ara V2 (41’CR)2 2

' 2 Y
+ 2+ 2] |vacos?e L+ = ,
vZ VR VR R2

where v is wave propagation velocity in background linear
medium, y is a small numerical parameter characterizing

the influence of a nonlinear characteristic f .

IV. CALCULATING THEFUNCTION 1(F,t)

A. Planewave approximation

Even in the approximate form of equation (8) or (9) with
the right-hand side of the form (10), the solution to the
problem of the wave phase dependence in a nonlinear
medium is apparently impossible. Further methods of
simplifying the problem are needed, in which a qualitative
analysis of the wave behavior is possible. One of them,
describing the propagation of a wave in the far field, is the
"plane wave approximation”. It consists of neglecting the
dependence of the permittivity on the coordinates R, 6,
andtakinginto accountonly the dependence on the function
r(F,t). The rationale for this approximation is the analogy

with the propagation of radiation in a linear medium, when
at a sufficient distance from the emitter the wave can be
considered as plane, neglecting the decrease in amplitude
with distance and taking into account only the phase
relationships. Then the problem of the first-order partial

differential equation 8) solving, where
ea = £0(L+7yf (p(7))), allows for anexactsolution.

Let's makea replacement
u :J. dt (11)

ve€ala -

Then the equation

u)% +u§ +uz2 =1. For this nonlinear equation with constant

is transformed to the form [8]

coefficients, the complete integral is known

U=Cx+Cyy+C3z+Cy,
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where C2+C%+C2 =1 [8]. However, since the same
equation describes the process of radiation propagation in a
linear homogeneous medium, the desired particular solution
has the form u=vt—R. The solution of the original
equation (8) is obtained asthe solution of the transcendental
equation (11) with respect to the variable t by the found
value u.

B. Direct decomposition method

Let us apply the direct decomposition method to equation
(9). This method gives correct results only at a small
distance from the source, but allows for a more accurate
account of the structure of the dependence (10). We will
look for a solution in the form of an expansion in a small
parameter y: t=1g+7yt +.... In the zero approximation,

corresponding to the case of a linear medium, we have the
solution

R
T0=t—v,

2( 1 2y 2.2 2.2
R (V—Z—TTlR +Y TR +...J+’Y T+ =

= (BT + vlz Fx(r0)+

v

where

F(R,6,7g)=R?f

, 2
1 Sinze[MTo)Jr(P(To)Jrq)(To)j N
(4nR)? vv VR R?
(50) , ol0)’ (o), @lto))’
+[(P o), @ OJ +4c0329[q)—°+—0] .
R VR R?
Neglecting terms of the second and higher orders of

v2 v
smallness, we obtain an equation forthe first approximation

TR =~ .
2R%v

By integrating this ordinary differential equation, we obtain
an expression for the function t;

R
Fyt—— |dr
ot X( vj B 1J-FdR
1 vy R vy R

12)
C. Pfaff'smethod

Let us write equation (9) in a form resolved with respect
to one of the derivatives

1
R :_\/Hagam!e!r)_ﬁtg . (13)

We chose the minus sign by analogy with the linear case,
HagaR -
Let's apply Pfaff's method [9] to solve this equation. Let

us consider the relation for the total differential of an
unknown function dt=1¢d6+tgdR, which, after taking

into account (13), takesthe form

where t=t —

dr—19d9+\/uasa(R,G,t)—%tngzo. (14)

Let's replace all variables, excluding R
parameters u;,U,,Us:

, through new

0=2(R,ug,Up,U3), T=C(R,Uy,Up,Ug),

19 =n(R, Uy, Up, Ug) (15)

When substituting into equation (14), taking into account
that

dr= % dR+— % du + — % du, +—€du3,

OR ouy ouy Ouz
We receive
0 0
(S-S hasa(R 0.0~ (/R JoR+

(16)

+Z(ﬁ—nﬂ]du,

i3\ 0y, ou;

There is sufficient arbitrariness in the choice of functions
&,m,C, butthey must satisfy the conditions

a4

R T]_"‘\/Haaa R g, Q) (T'I/R)

an

Ithas been proven [9] that such functionsalways exist.
We assumethatthe function & corresponding to the polar
angle 6 does not depend on R . Then, integrating the first

condition (17) with respect to the variable R , we obtain the
integral equation

R
=t [nata(REL)-(n/RPAR 18)
0

which establishes the connection of the function ¢ with the

other introduced functions. The validity of the established
type for function ¢ and in fact for the desired function <

confirmed by particular cases. For example, the complete

1
integral of the equation rZR +¥r§ = f(R) hasthe form [8]
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o(R,0)=C0+ T*/ f(R)—(Cy/RFPdR+C,.

In addition, the function obtained from equation (18) will
satisfy the naturalboundary condition T|R:O =t.

Let's consider the left part of the second condition (17)

oc 08 R drR
—-N—=- 5 :
0\ ata(R.EC)—(n/R)

an an
deq OE Oeg 0C) 1 on| o
Ha| A2 - =
o0& ou;  oC ou; R4 OU; ou;

So that at different u; these expressions had a common

factordescribing the dependence on the variable R, needto
require the function dependencies §&mn,L by variable

U=u; +U,+Us. Then

y :_}‘d_R{M (%%+%%J_L@}_
0 /uasa—(n/R)z 4 6e ou oc ou) R2ou

2% o=
T]aqul 1.

After substituting these functions into equation (16), we
have an extremely simple equation in total differentials
du=0, the general solution of which ¥(u)=0, where ¥

is arbitrary function. Now, to obtain the general integral, it is
necessary to finally decide on the choice of functions
g(u)n(R,u), express the variable u from equations (17)

through the original variables R,0,7 and, substituting into
the function W, obtain the general integral of equation (13).

The proposed method for obtaining a solution cannot be
fully implemented due to the complex dependence (18) of
the function { from u. In addition, to specify the function

Y a boundary condition of the form r|e:90 =\V(R) is

required. It cannot be found. Therefore, to determine the
wave phase characteristic in a nonlinearmedium, we use the
limiting cases of a linear and quasilinear medium. In this
case, for simplicity, we use the first approximation of the
integral equation (18), in which in the integrand

=Cp=t—R/V. (19)

For a linear medium, the nonlinear dependence (10)

becomes a constant paeg = and in order to obtain

1
v2'
dependence (18), it is necessary to demand n|y:0=0.

Comparing (18) with the result obtained in the small
perturbation approximation (12)

~ 1R\/1 f(v/RPdR~t-R 1 TR
C~t—;£ +7x(Go)f —(nv/R) ~t—v—5£

we are convinced that the contribution of the function n is
of the second order of smallness, and one can use the case
n=0.

To find the function &(u), we use the last of the equations
(15), which can be rewritten

agjou _ % dR .
&/ 5 Juaea(REC)—(n/RP

Lo foea, eadcf@)") Lon|_ ()
{“a[ a§+ag 8u(8uj J R2 au]_n(“au]'

Taking into account the approximations made, we can
also talk about the insignificance of the effect of mutual
dependence of the angular distribution and phase
characteristics of the wave in a nonlinear medium. Thus, in
the first approximation, the phase characteristic can be
calculated using the formula

R R
T:t—%j 1+yx(t—R/v)de:t—_[ galadR . (20)
0

0

V. PHASE DEPENDENCE MODELINGAND RESULTS ANALYSIS

The main obstacle to the numerical implementation of
various methods for determining the signal delay during the
propagation of radiation in a nonlinear medium is its
dependence on the magnitude of the field (or its energy
density) along the entire propagation path from the source to
the receiving point. At the same time, the problem of
correctly finding the value of the characteristics of the
electromagnetic field near the source is a difficult task
associated with the field singularity in point source at
R — 0. Thus, the values of the fields (3) in the immediate
vicinity of the emitter are incorrect, and a more detailed
analysis of the magnitude of these fields is required here. An
attempt to solve this problem was presented in [10]. The
singularity-free expression for the energy density is

1l 2 2 2 1( 2 2 2)_
W—Z{D)(JrDy+DZ+V—2HX+Hy+HZ =

x(t—S)lzsinze N2 , 2
¢ ¢ .9
= = |+ 5=+= ,
2(4n)Pe, [[sz (Vz VR]}
2
a2+p2+(h—zj +D—Z
2 2
2
a2+p2+ E+z —E—Z
2 2

where h and a are length and the cross-section radius of a
small cylindrical radiatorcorresponding to a dipole (2).
Numerical modeling of the wave phase characteristic and

1)

| ~maIn
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the equivalent refractive medium index (5) was carried out
based on expressions (20) and (21). The source of influence
was a cylindrical emitter with a time dependence in the
Gaussian pulse form

oft)= AeBlt=to P sino(t—tg),

where A=05, B=20GHz, f=4GHz,
tp=0.13 ns, h=0.05m, a=0.005 m, y=0.0001. Fig. 1

shows the increment of the equivalent refractive index n-1
from (5) due to the nonlinearity of the medium.

n-1 T T T T T

o=2nxf,

R. m
Fig.1. Incrementof the equivalentrefractive index in the
Gaussian pulse case.
The simulation showed that due to the rapid decrease in
wave energy density in the medium (according to (21), in

the nearzone of the emitter its decrease ~ 1/R4) already ata

short distance from the emitter, the amplitude of the wave
becomes insufficient for the response of the nonlinear
medium to the effect. This effect prevents theaccumulation
of nonlinear effects due to the multiple interaction of the
wave with the medium. Therefore, taking into account the
sphericity of the wave, the occurrence of shock waves is
excluded even in the absence of dispersion. For a
mathematical description of the propagation process, we can
limit ourselves to single scattering approximations, which
generalize the Born approximation.

VI. AMPLITUDE CHARACTERISTICS OF THE
ELECTROMAGNETICFIELD
Since the direct solution of the system of equations forthe
amplitude functions m;(F,t), i =1,2..6 obtained by equating
the coefficients at 8(c(F,t)) in (6) and other Maxwell’s
system equations, impossible, first of all, due to the extreme
bulkiness of its recording, we will undertake certain
simplifications. First of all, let's stop trying to find functions
Sj (F,t), characterizing the scattered field, setting them equal

to zero. Let us write the system of equations (1) more
compactly without directly calculating the derivatives:

0 0
®

axaz( 2@() axazat( 4 X)

o2 o°

2 @

o (myp ayazat( 5D),

A Rl )
—(m oy )= ———
o2 20% )+ 8y2 hPX .

5L @ ) )| 0Bl 0l - Yool -2,
2 fme-meorl= 5200 )]

oz-oy

(e )+

) (19)
Vl W+ovty)—— ; (o).
o -mafor]= £ ) )|

2

1 0
—v—2(1+ fo)%(mzq)x),

[(ms —my oy ]=0.

oxoyoz

The last equation implies the equality m, = mg, and from

the first two — my =m,, i.e. the symmetry of the problem
with respect to transverse coordinates X,y is physically

obvious, therefore, only 3 equations out of 6 will be
informative. Moreover, we can equate the arguments of the
same derivatives on the left and right, since in the linear
case all amplitude functions are equal, and possible
additional arbitrary functions (“constants” with respect to
the arguments of the derivatives used) will therefore be
equal to zero. It is also convenient to switch to a cylindrical
coordinate system.

As a result, the system of equations (22) is transformed to
the form

M= (m), (23)
o( o 8° 10 8
éﬁ—p(P%J = (me®)+ v—za[(“ fo)a(ms(P)}  (24)
0 0
— [(me—mmlzvizé—p@lwfx)a(mw)}
2 (25)
2 ( vfx) (mlcp)

We will solve the system using the method of successive
approximations. We will reduce equations (23)-(25) to
integral form. Let us single out the linear d'Alembert
operator in them. We integrate both parts of (24) with

respect to the variable t and take into account
b 02 o (omg
—(mgp)=—5(Mgd)——| —>D |, then

(o) =25 mg0)- £ T

% 1 1o ot
L =% med)=——| p-Z [myodt |-
2 ZJ(mG ) p@p[papjml(p ]

ol v ot 0
omg oy 0
2 T+ m
v &( at j v ﬂ( 60)
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Likewise
[j— 1o ]<m4q>>
o 1 ) vy 02
=52 — (mg®)- 2 = L+ fo)a(me@)Jr v_ZF(mA'CD)_
—LT m4CD)xdp
21 P

The last terms on the right-hand sides can be neglected as
a first approximation, since they represent quantities of the

order y2

equation, we arrive at a system of integro-differential
equations

. As a result of solving the one-dimensional wave

0

m1<P=E(m4‘D)’
t z+v(t—t
m4CD mG(D——IdT -[ 0 (amG q)\]dc
Z—Vt ‘r a
t z+v(t-1)

mo=Jde [ |22 P_,fml(P t +i3[am6 cbj dc,

20 7_ V( ) pa ot ot

which is supposed to be solved iteratively.

Note that, since the resulting system of equations does not
explicitly include a nonlinear characteristic, its solution will
lead to functions corresponding to the linear case. It follows
thatthe influence of the nonlinear medium on the amplitude
characteristics of the components of the electromagnetic
field is a magnitude of the second order of smallness, and in
the first approximation this influence can be neglected.

VIl. CONCLUSION

The problem setting methodology proposed in this article
differs from the traditional one in two aspects: 1) a wave
from a specific source in the form of a dipole is investigated,
2) the solution is carried out for a signal with an arbitrary
time dependence, as well as the general type of non-linear
characteristic of the medium. The solution to this problem
and subsequent numerical modeling made it possible to
identify the general patterns of waveform transformation by
nonlinear scatterers and to analyze the patterns of wave
distortion depending on the shape of the original signaland
the type of nonlinear characteristic.

The method of variation of field parameters of a linear

problem is applied to the solution of a system of Maxwell’s
equations for a nonlinear medium. The elementarity of the
radiation source used makes it possible to determine
unknown functions from the condition of equality of
coefficients for the & -function, its derivative and
antiderivative.

The nonlinear medium has the greatest influence on the
wave phase. Since even in an approximate form the exact
solution of this equation, which has an analogy with the
eikonal equation of geometric optics, is apparently
impossible, several methods of simplifying the problem are
considered (the “plane wave approximation”, the direct
expansion method, the Pfaff method).

Despite the complexity of the problem, which leads to
inevitable approximations, the approach used allows us to
identify the effects of accumulation of changes in the
amplitude, phase and polarization characteristics of a signal
during wave propagation in a nonlinear medium. This is
whatmakes it stand out from classical methodsbased onthe
use of the small disturbance method, the results of which are
valid only in the near zone of the source, where the structure
of the influencing signal itself requires correction.
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