
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 10, 2025 

 

30 

 

  

Abstract-This paper proposes a robust and efficient control 

strategy for a class of second-order uncertain nonlinear 

systems by integrating Adaptive Fixed-Time Terminal Sliding 

Mode Control (AFTSMC) with a low-pass filtered Disturbance 

Observer (DO), forming the novel AFTSMC-DO framework. 
The proposed approach addresses key challenges in nonlinear 

system control: fast convergence, chattering mitigation, and 

disturbance rejection. The AFTSMC design leverages a non-

singular fast terminal sliding manifold, ensuring that system 

trajectories converge to the desired reference in a fixed time 
independent of initial conditions. To further improve 

disturbance rejection and reduce reliance on high control 

gains, a DO is introduced to estimate unknown matched 

disturbances using filtered state derivatives, enhancing both 

transient performance and robustness. A rigorous Lyapunov-
based analysis proves the global fixed-time stability of both the 

tracking errors and disturbance estimation error. The 

disturbance bound is adaptively estimated using a barrier 

Lyapunov function (BLF), ensuring bounded and smooth 

adaptation. Theoretical guarantees are supported by a 
comprehensive comparative simulation on the inverted 

pendulum on a cart-a classic benchmark of underactuated 

nonlinear dynamics. The proposed AFTSMC-DO is compared 

with the Adaptive Full-Order Time-Varying Sliding Mode 

Control (AFOTVSMC). Simulation results show that 
AFTSMC-DO achieves faster convergence, lower steady-state 

error, better tracking under time-varying disturbances, and 

lower control effort. These advantages make AFTSMC-DO a 

promising candidate for applications in robotics, aerospace, 

and industrial systems requiring rapid and robust control 
under uncertainty. 

Keywords-Adaptive Control, Fixed-Time Stability, Terminal 

Sliding Mode, Disturbance Observer, Nonlinear Systems, 

Robust Tracking, Inverted Pendulum on Cart. 

I. INTRODUCTION 

Sliding Mode Control (SMC) has been widely recognized 

for its robustness in handling nonlinear systems subject to 

matched uncertainties and disturbances [1]. Despite its 

benefits, traditional SMC suffers from the reaching phase 

and high-frequency chattering [2], which degrades 

performance in practical systems [3, 4]. To overcome this, 

Terminal Sliding Mode Control (TSMC) introduces 

nonlinear manifolds to guarantee finite-time convergence, 

improving transient dynamics [5, 6]. 

Fixed-Time Terminal Sliding Mode Control (FTSMC) 

extends this idea by ensuring that convergence time is 
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uniformly bounded, independent of initial conditions-a 

desirable property for time-critical applications [7, 8]. 

Recent studies [9-12] have explored adaptive FTSMC 

strategies to deal with time-varying or unknown disturbance 

bounds. However, most existing many adaptive laws rely on  

overestimating the uncertainty bound or converge slowly in 

the presence of rapidly changing uncertainties [13, 14]. 

On the other hand, Disturbance Observers (DOs) have 

been proposed to estimate and compensate for unknown 

perturbations, improving robustness without excessive 

control effort [15, 16]. In particular, filtering-based DOs 

provide practical simplicity compared to high-order 

observers [17, 18]. Integrating DOs into sliding mode 

frameworks has shown promise in rejecting matched 

disturbances and improving control smoothness [19-21]. 

Nevertheless, there remains a gap in unifying the benefits 

of adaptive FTSMC with disturbance observers into a single 

provably stable framework. Motivated by this, we propose a  

novel Adaptive Fixed-Time Terminal Sliding Mode Control 

with Disturbance Observer (AFTSMC-DO). Unlike prior 

work, AFTSMC-DO: 

• Ensures fixed-time convergence regardless of initial 

conditions; 

• Estimates matched disturbances using a low-pass 

filtered DO; 

• Adapts the uncertainty bound using a smooth Barrier 

Lyapunov Function (BLF). 

The contributions of this paper are threefold: 

1. A unified AFTSMC-DO control law that combines 

fixed-time convergence, disturbance estimation, and smooth  

adaptation. 

2. A Lyapunov-based fixed-time stability proof 

incorporating the DO error dynamics. 

3. Comparative validation of AFTSMC-DO, 

AFOTVSMC on an inverted pendulum benchmark. 

The remainder of this paper is structured as follows: 

Section 2 reviews the Adaptive Full-Order Time-Varying 

Sliding Mode Control (AFOTVSMC) approach and its 

stability analysis. Section 3 introduces the proposed 

Adaptive Fixed-Time Terminal Sliding Mode Control with 

Disturbance Observer (AFTSMC-DO), including the design 

of the disturbance observer and a rigorous stability proof. In 

Section 4, the effectiveness of AFTSMC-DO is 

demonstrated through simulation on an inverted pendulum 

on a cart, with performance compared against AFOTVSMC. 

Finally, Section 5 concludes the paper with key findings and 

suggestions for future research.   
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II. ADAPTIVE FULL-ORDER TIME-VARYING SLIDING MODE 

CONTROL 

Consider a class of second-order uncertain nonlinear 

systems: [22] 

( ) ( ) ( ) ( )
1 2

2

,

, , ,

x x

x f x t b x t u t x t

=


= + + 
              (1) 

where ( ) ( ) ( )1 11 1, , 
T n

nx t x t x t=     and 

( ) ( ) ( )2 21 2, , 
T n

nx t x t x t=     are vectors of state 

variables; ( )   2
1 2,  

T nx t x x=  ; ( ), nf x t   is smooth 

known dynamics; ( ), n nb x t   is invertible and bounded: 

( )min max0 ,b b x t b   ; ( ) nu t   is the control input; 

( ), nx t   is bounded lumped uncertainties 

( )( )max,x t    that includes model uncertainties 

( ), nf x t   and external bounded disturbances 

( ), nd x t  . 

Assumption 1. The lumped uncertainty ( ),x t  and its 

time derivative are bounded: ( ),x t    and 

( ),x t   . 

Assumption 2. The reference signal ( ) n
dx t   is 

smooth, and its derivatives ( ) n
dx t   and ( ) n

dx t   , 

are bounded and exits for all t + . 

The tracking errors are defined: 

( ) ( ) ( )

( ) ( ) ( )

1 1
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d

d

e t x t x t

e t x t x t

= −


= −

                        (2) 

The time-varying sliding surface is defined: 

( ) ( ) ( ) ( ) ( )( )2 1s t e t t k e t t = + + +               (3) 

where ( ) ( ) ( )1 , , 
T n

ns t s t s t=     is the vector of 

sliding surfaces; ( )1diag , , n n
nk k k =   is a  positive-

definite matrix; ( ) ( ) ( )1 , , 
T n

nt t t  =     is a  time-

varying piecewise function that is given as below: 
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The fast terminal sliding manifold is designed: 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

1

2

arctan

          arctan

t s t c s t s t

c s t s t

 


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+
               (5) 

where ( ) ( )1, , ,  1,2n n
j j jnc diag c c j=  =  are positive 

definite matrices; ( ) ( )2 2
11 , ,1 n n

ns diag s s = + +  ; 

( ) ( ) ( )1arctan arctan , ,arctan
T n

ns s s =   ; 0 1  ,  

( ) ( ) ( )1arctan arctan , ,arctan
T

n
ns s s   = 

  . 

The control input is proposed: 

( ) ( ) ( ) ( )( )1 , eq swu t b x t u t u t−= − +                (6) 

where the equivalent control ( )equ t  is designed as: 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )

2

1 2

,

 arctan arctan

eq du t f x t t k e t t x t

c s s t c s t s t

 

 

= + + + −

+ +
      (7) 

and the switching control ( )swu t  is designed as: 

( ) ( )( ) ( )( )ˆ s i gnswu t a t t = +                  (8) 

where a  is a  small constant; ( )ˆ t  is the estimate of   that 

is designed as below: 

( )
( )

( )
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, otherwise

t

t
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                     (9) 

where 0  . 

Stability of AFOTVSMC: 

The Lyapunov candidate: 

( )
22

1

1 1
ˆ

2 2
V  = +  −                        (10) 

 The derivative of 1V : 

( )1
ˆ ˆV   = +  −                        (11) 

 From (3), (5), (6): 

( )ˆsign  = − +                         (12) 

 So that: 

( )( ) ( )

( )

1
ˆ ˆ ˆsign

ˆ ˆ ˆ   

V     

    

= − +  +  −

 − +  +  −
            (13) 

Case 1:    

( )1 max
ˆ ˆ0,   if V    − −                   (14) 

Case 2:    

( )

( )

1

max

1
ˆ ˆ

1
ˆ ˆ    1 0,   if 

V     


  


 − +  +  −

 
 − + −     

 

       (15) 

Therefore, 1 0V  . Hence, the sliding variable ( )t  

converges to 0 in finite time, tracking errors ( ) ( )1 2 and e t e t  

converge to zero in finite time. 

III. ADAPTIVE FIXED-TIME TERMINAL SLIDING MODE 

CONTROL BASED ON DISTURBANCE OBSERVER 

A. Disturbance Observer 

Use an observer with low-pass filtering: 

( ) ( ) ( ) ( ) ( )( )2

1ˆ , , ,
1

x t x t f x t b x t u t
p

 = − −
+

      (16) 

where p  is the Laplace operator. 

B. Adaptive Fixed-Time Terminal Sliding Mode Control 

A fixed-time sliding surface is defined: 

( ) ( ) ( ) ( )2 1 1 2 1

p

q
s t e t e t e t = + +               (17) 

where p  and q  are positive odd integers and 1p q  . 
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 The derivative of ( )s t : 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
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−
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+
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The non-singular terminal sliding manifold: 

( ) ( ) ( ) ( )( )

( ) ( )( )
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1

2

sign
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k s t s t
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where 1 20 1    ; 1 2, 0k k  . 

The derivative of ( )t : 

1 21 1

1 1 2 2s k s s k s s
 

  
− −

= + +               (20) 

The control law is designed as: 

( ) ( )

( ) ( )

( )
( )

( )
1

,

,
ˆˆ sat ,
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where ( )ˆ t  is adaptive estimate of the uncertainty bound 

that is defined later;   is a  small constant for the saturation 

function ( )sat  ; ( )su t  is 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )1 2

1 2 2 21

1 2sign sign

p q

q
s d

p
u t x t e t e t e t

q
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−
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 Barrier Lyapunov Function: 

( )
( )

( ) max
max

ˆ
ˆln 1 ,    with 

t
W t t


 



 
= − −  

 
        (23) 

The derivative of ( )W t : 

( )
( )

( )max

ˆ

ˆ

t
W t

t



 
=

−
                      (24) 

The adaptive law based on the Barrier Lyapunov Function 

(BLF) is defined as:: 

( ) ( )( ) ( )max

1
ˆ ˆt t t   


= −                (25) 

where max  is a  conservative but finite upper bound for 

( )ˆ t ; 0   is a  tuning constant. This adaptive law ensures 

smooth and bounded adaptation of the disturbance est im a te 

and fits naturally into Lyapunov-based fixed-time stability 

analysis. 

Theorem 1. Consider the system under Assumptions 1-2. 

If the control law and adaptation law are applied as 

designed, then the tracking errors ( ) ( )1 20, 0e t e t→ →  and  

the slide variable ( ) ( )0, 0s t t→ →   in fixed time, 

independent of initial conditions. 

Proof. 

The Lyapunov candidate is chosen as: 

( ) ( ) ( )21

2
V t t W t= +                       (26) 

where ( )W t  is Barrier Lyapunov Function (23). 

Differentiate ( )V t : 

( ) ( ) ( )
( )

( )max

ˆ

ˆ

t
V t t t

t


 

 
= +

−
                (27) 

 

From (18), the derivative of ( )s t : 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )
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2 1 2

2
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−

−
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Combine (1), (21), (28) and (20), we have   

( ) ( ) ( )( ) ( )ˆ sign ,t t t x t  = − +                 (29) 

where ( ) ( ) ( )ˆ, , ,x t x t x t =  −  . 

Substitute (29) into (27): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
ˆ,

1
ˆ       ,

V t t x t t t t

t x t t

   


 


=  − +

 
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 
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 Choose   such that:  

( ) ( )
1

ˆ max ,t x t


  +                      (31) 

Therefore, ( ) 0V t  . Hence, the system is globally 

uniformly stable, ( ) 0t →  and ( ) 0s t → , ( )1 0e t →  and 

( )2 0e t → . 

■ 

IV. SIMULATION RESULTS 

In this section, the proposed controller will be applied for 

an inverted pendulum on a cart that is illustrated in Fig. 1.  

 

Fig. 1. Model of Inverted Pendulum on Cart. 

The mathematic model of the inverted pendulum model is 

described in the state-space model as below [23] 

( ) ( ) ( )
1 2

2 , , ,

x x

x f x t b x t u x t

=


= + + 
               (32) 

where   is the pendulum angle from vertical (down) ( )rad ; 

x  is cart position coordinate ( )m ; cm  is mass of the cart 
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( )kg ; 
pm  is mass of the pendulum ( )kg ; 2l  is length of 

the pendulum ( )m ; g  is the gravity acceleration ( )2.kg m ; 

u  is the control law; ( ) ( ),  and ,f x t b x t  are defined: 

2
2 1 1

1

2
1

cos sin
sin

cos4

3

p

c p

p

c p

m lx x x
g x

m m
f

m x
l

m m

−
+

=
 
 −
 +
 

; 

1

2
1

cos

cos4

3

c p

p

c p

x

m m
b

m x
l

m m

+
=

 
 −
 +
 

 

The lumped uncertainties ( ),x t  includes uncertain 

parameters ( ),f x t  and the external disturbance ( )d t  tha t  

has the equation as below 

( ) ( )1 2, 0.01sin10 0.05cos 0.25sin rand 1x t x x t = + + +  (33) 

The desired angle of the inverted pendulum is given as 

below 

( ) 41 0.25t t
dx t e e− −= + −                  (34) 

The parameters of the inverted pendulum on cart are used  

for the simulation: ( )1cm kg= ; ( )0.1pm kg= ; 

( )2 0.5l m= ; ( )29.81 /g m s= . The parameters of 

controllers: 1 3 = , 2 2 = , 3p = , 2q = , 1 5=k , 2 4k = , 

1 0.8 = , 2 1.3 = . The initial values: ( )0 0.3 = , and 

( )0 0.2 = −  

 

Fig. 2. The angle of the inverted pendulum ( )t . 

The simulation was conducted using an inverted 

pendulum on a cart to evaluate the performance of the 

proposed AFTSMC-DO. As illustrated in Figs. 2 and 3, the 

angular position ( )t  and angular velocity ( )t  under 

AFTSMC-DO exhibit faster convergence and reduced 

steady-state error compared to AFOTVSMC. Fig. 4 shows 

that the sliding variable associated with AFTSMC-DO 

converges to zero more rapidly, indicating faster error 

dynamics. Furthermore, the control input generated by 

AFOTVSMC (Fig. 5) is significantly more aggressive than 

that of AFTSMC-DO, which confirms that the proposed 

controller achieves robust performance with reduced control 

effort. Lastly, as shown in Fig. 6, the disturbance observer in 

AFTSMC-DO accurately estimates the lumped uncertainty 

in real time, demonstrating high estimation precision and 

enhanced disturbance rejection. 

 

Fig. 3. The angular velocity of the inverted pendulum ( )t . 

 

Fig. 4. The sliding surface ( )s t . 

 

Fig. 5. The control law ( )u t . 
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Fig. 6. The disturbance estimation ( )ˆ ,x t . 

V. CONCLUSIONS 

This paper presented a novel Adaptive Fixed-Time 

Terminal Sliding Mode Control scheme augmented by a 

Disturbance Observer (AFTSMC-DO) for nonlinear second-

order systems under bounded matched uncertainties. By 

incorporating a low-pass filtered observer into the control 

loop and using a BLF-based ensures fixed-time convergence 

of both tracking and disturbance estimation errors. 

Through rigorous stability analysis and simulation on an 

inverted pendulum, AFTSMC-DO demonstrated 

significantly improved transient performance, robustness, 

and lower control effort compared to AFOTVSMC. These 

results suggest that the proposed controller is well-suited for 

safety-critical and real-time control systems. Future work 

will focus on experimental validation and extension to 

multi-input multi-output (MIMO) systems and networked 

control frameworks. 
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