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Abstract— This work addresses the challenge posed by the 

complexity of testing speaker verification models and datasets 

under real-world conditions. The proposed methodology 

automatically extracts missing metadata for each utterance, 

such as codec, language, age, gender, emotion, noise level, 
duration, and systematically stresses models by simulating 

bandwidth limits, lossy codecs, noise, volume changes, spectro-

temporal masking. Using the Equal Error Rate (EER) as the 

key metric, we test our methods on the VoxCeleb-1 dataset 

with ResNet-34 model, which reveals accuracy drops at 8 kHz, 
in low-SNR scenes and in cross-age trials, while showing 

robustness to moderate compressions and tempo shifts. The 

protocol offers an automated standardized and reproducible 

way to discover a speaker verification model’s strengths and 

weaknesses and can be extended to other speech tasks. 

 
Keywords—speaker verification, speech testing methods, 

evaluation protocol, voice-biometric. 

I. INTRODUCTION 

Today, speaker verification is the cornerstone of any 

voice-biometric system. Voice biometric systems are used 

for various purposes, such as pre-processing audio for voice 

assistants, identification and verification of call center and 

bank customers. The performance of all these systems is 

directly related to the accuracy of the model in constructing 

feature vectors of the speaker's voice, but often in real-world  

conditions, the audio signals also contain noise and other 

extraneous sounds. Such conditions can degrade the 

performance of speaker verification models, so it is very 

important to make our system as robust as possible to noise 

and extraneous signals. 

 

Unfortunately, there is no standardized set of methods to 

test such a system, is this field commonly used practice is to 

use different datasets with varied conditions such as noise, 

music, codecs, etc. This creates difficulties with 

understanding accurately under which conditions your 

system fails and makes you listen to each example yourself 

to define problematic cases and conditions. This extends the 

time of the testing procedure after each training.  

 

The goal of this paper is to develop a methodology that 

will simulate various challenging conditions that are 

encountered in real life, such as: environmental noise, 

recording quality artifacts, insufficient speech in the signal, 

etc. In our methodology, we will use different combinations 

to get a full picture of the quality of our systems. Using this 

testing protocol is going to significantly speed up the 

process of testing and releasing new versions of our model. 

 

 

II. RELATED WORK 

As mentioned before, there are no publicly accepted test 

protocols for speaker-verification models and systems. 

Researchers often use different types of datasets containing 

recordings from multiple environments and quality levels.  

One of the most popular and widely accepted datasets f o r 

testing is VoxCeleb 1 [1], which is based on interviews of 

different celebrities from YouTube with a set of over 100K 

utterances from 1,251 speakers. VoxCeleb1 is split into 

three parts: VoxCeleb1-Original (Vox1-0), VoxCeleb1-

Extended (Vox1-E) and VoxCeleb1-Hard (Vox1-H).  

Another set of datasets used for speaker-verification task is 

the NIST Speaker Recognition Evaluations (SRE), it’s the 

oldest running series of benchmark datasets. Conducted by 

the U.S. National Institute of Standards and Technology 

(NIST). Despite the large collection of different records in 

this dataset, it does not solve the key problem – the lack of 

accurate metadata on quality, noise, codecs, and the 

presence of other sounds for each recording. This forces us 

to manually check each audio file. 

However, it turns out that NIST 1998 SRE [2], contains a 

study, that describes impact of factors, as gender, duration 

of speech-segment, input source, microphone type, pitch, 

speaker health, speaking rate, noise. This work analyzes 

results the 1998 SRE challenge, but does not offer any 

methodology for testing such systems, which has led us to 

this paper. 

 

 As we can see there is no publicly accepted testing 

methodology for voice-biometric systems, all of them rely 

on different datasets with different recordings qualities and 

conditions without metadata for each sample. This makes 

debugging and testing process difficult and time-consuming 

process and create huge challenges for automating quality 

control. 

III. METHODOLOGY 

Based on the discussion in  previous sections, the main 

problem of all these datasets is the lack of metadata with  a ll 

necessary information for testing, but there is also an 

additional problem, which is the lack of diversity of data in 

test datasets. it can be a problem when we prepare our 

system for one type of data and, in production, encounter 

conditions that are completely different from those in our 

training dataset. This led us to two tasks. First, creating a set 

of algorithms to extract correct metadata from existing 

datasets, it’s going to be passive part of  the method. S

 Second part is going to be active, where we will simulate 

different conditions on our existing datasets, in order to 

increase diversity of different hard conditions to properly 

test our voice biometric systems. 
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A. Testing metrics 

As evaluation metrics in our testing protocol, we 

decided to use one of the most popular and widely used 

metrics, such as Equal Error Rate (EER). Using this 

popular metric will allow us to compare our results more 

easily with the work of other researchers. EER is the point 

where false-acceptance rate equals to false-rejection rate, 

so, basically, it helps us find the sweet spot between these 

two values. 
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• FAR(t) is the rate at which impostor attempts are 

incorrectly accepted when the score exceeds the 

threshold t; 

• FRR(𝑡) is the rate at which genuine attempts are 

incorrectly rejected when the score falls below the 

threshold t. 

B. Passive methods 

In this section, we are going to define information about 

the existing condition of our dataset samples, in order to 

correctly create a connection between metrics and 

conditions of each sample. For our testing we are going to 

choose following features of audio samples: 

Sampling rate: one of the most important features of a ud io  

for voice biometry. With higher sampling rate we have more 

data for our system, which leads to increased accuracy. 

Codec compression: there are a lot of different audio-

compression codecs, such as MP3, AAC, OPUS, GSM, 

AMR etc. Each of them has its own algorithm to compress 

original audio to decrease size of original sample. So, it is 

very important to accept samples with different codecs. It is 

also important to track bitrates and other different 

parameters of each codec, as they can heavily affect final 

results. 

Language: Even though most biometric systems are text-

independent, this does not make them fully language-

independent. It’s obvious that a  system trained for Chinese 

is not going to perform very well on Russian or any other 

European language. So, it’s important to understand 

language limitations of speaker verification systems. 

Emotions: Different emotions can change vocal tract 

characteristics, which are going to impact accuracy. 

Unfortunately, the accuracy of current generation of speaker 

emotion detection models are limited, so because of this, we 

will only use three main emotions, such as: angry, neutral 

and happy. It will help us to minimize the error in our 

testing results. 

Age group: Defining different age groups, such as children, 

teenagers, adults, seniors is important, because voices 

naturally change over time due to aging, health conditions, 

or lifestyle factors. 

Gender: Usually, average male voice has an octave lower in  

pitch, 100Hz vs 200Hz for females, plus men have deeper 

resonance, it’s all due to difference in size of vocal tracts. 

Background noise: Estimating level of background noise is 

crucial in order to detect a weak point of our algorithm. 

However, predicting SNR can be tricky, so we use the 

method described in this combined-model [3], where a 

multi-task VAD-SNR estimation neural network was 

introduced. 

Duration: identifying minimum, optimal, and maximum 

audio duration for our systems is crucial for production use 

by customers, because it’s a primarily defines the latency of 

biometric systems. Being able to use the system with very 

short durations improves user experience and reduces the 

computational power needed to calculate embeddings, as 

shown in this research [4]. 

Defining the above-listed features for our datasets samples 

is crucial to correctly understand the connection between 

different conditions and our final results. 

C. Augmented methods 

In this section we are going further than the passive 

methodology which was described in the previous section, 

even though features that was described there are 

comprehensive, but usually each testing dataset for the 

speaker-verification task is collected in one domain, which 

is narrows the diversity of conditions. Collecting a dataset 

for a  speaker- verification task is very hard and can only  be 

done automatically, because manually labeling is not an 

option in this field. So, it’s important to use the data that we 

have to the maximum and artificially simulate different 

conditions that can occur in production. 

We are going to use a different methods of increasing 

diversity as much as possible for each previously described 

feature. 

Downsampling: Even though current generative neural 

networks so-called super resolution networks [5] allow us to 

increase sampling rate of audio and it is quality they are not 

accurate enough for us to measure the differences between 

original and upsampled audio in speaker-verification results. 

Because of this reason we are going to only decrease the 

sampling rate – that is, perform downsampling. For 

downsampling we are going to use the classic method, 

which involves using low-pass filter to remove frequencies 

above the Nyquist frequency of the target sample rate, then 

performing decimation (keeping every n-th sample, where n 

= original sample rate / target sample rate). For our testing 

protocol we choose the following sample rates: 

• 8 kHz – a classic sampling rate for phone calls in 

GSM/CDMA. It’s usually the most important 

sample rate that should be tested and considered as 

the primary sample rate for such any speech 

processing system. It’s most also problematic, 

because we have less information for our speaker 

verification systems generation and as we 

mentioned earlier, sampling rate has a  huge impact 

on final accuracy. 

• 16 kHz – a new standard for voice calls for phones 

as part of VoLTE and for VoIP. It’s also used in 

some communication applications. 

• 22.05 kHz – half the sampling rate of audio CDs 

quality. Usually used in computer applications. 

• 44.1 kHz and 48 kHz – used in Audio CD and DVD 

and can be recognized as high-quality audio 

standard for most cases. 

It’s worth to mentioning that we only downsample to sample 

rates below our original sample rate, otherwise we would 

just be upsampling and adding zeros instead of useful data 

to the audio samples. Note that when we apply any codec 

and downsampling, we use the downsampling method that is 

included in FFmpeg codec-specific libraries. 

Simulating codecs: in order to properly apply different 

codecs, we are going to use FFmpeg. It’s containing the 
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correct and stable version of the audio codecs that we need 

to apply to our samples. It should be noted that, FFmpeg 

usually has a few different implementations for each type o f  

codec, so it’s crucial to use the correct one in order to get 

similar samples as they would be in production. One should 

be aware that almost all codecs have two modes, CBR 

(Constant Bit Rate) and VBR (Variable Bit Rate), we 

decided to use CBR, because it improves the repeatability of  

results and is also more widely used in voice applications, 

but nothing prevents changing CBR to VBR if it’s more 

applicable for your production conditions. 

• MP3: For the MP3 codec we have decided to use the 

libmp3lame encoder wrapper instead of libshine. 

It’s widely used as the de facto standard encoder 

and provides us with better audio quality and 

overall control over bitrate. 

• AAC: There are also two implementations of AAC, 

the native implementation and the Fraunhofer FDK 

based libfdk_aac. It would be fair to say that, in 

this list AAC is the most challenging in terms of 

implementation. A lot of companies have their own 

implementations, which makes our task even 

harder, but libfdk_aac offers many more options 

and help us make samples closer to production 

results.  

• OPUS: As in other codecs, ffmpeg has its own 

native implementation and an additional library 

called libopus, we are going to use the libopus 

implementation because it offers more options for 

compression. Also, it offers an application type, 

where audio is used, such as VoIP, audio and 

lowdelay, of course we decided to choose VoIP, 

because of our field of research.  

• GSM: The three previous codecs we described a 

very widely used in different applications such as 

VoIP, streaming services, audiobooks etc, but 

based on name of codec, we can see that the GSM 

codec only used in second generation cellular 

networks for mobile phones, which creates a 

certain difficulty with its implementation, because 

it’s not used anywhere else, except cellular 

networks. FFmpeg includes the libgsm library, 

which correctly implement the GSM codec based 

on accepted standard. Also, compared with other 

codecs, here we don’t need check any options to 

choose bitrate or sample rate. Sample rate should 

be set at 8 kHz and bitrate should be 13 kbps 

exactly, otherwise it’s just not going to work. It has 

actually made our work much easier, since we 

don’t need to check a ll different combinations of 

sample rate and bitrates, and also having one 

standard implementation give us a  guarantee that 

results of our research and at the production will be 

the same. 

• AMR: While GSM codec quality is usually good 

enough to understand speech of your conversation 

partner, but it has a fixed bitrate value. From one 

side, it’s made implementation across devices 

easier, but in very heavily populated areas it creates 

problem for cellular networks. So, AMR was 

created to solve this problem. The AMR codec is 

divided into two parts: AMR-NarrowBand [6] and 

AMR-WideBand [7]. AMR-NBhas a  fixed 8 kHz 

sample rate and dynamic bitrates, ranging from 

4.75 kbps to 12.2 kbps. Bitrates on cellular 

networks are change dynamically based on how 

busy radio channel is, in our implementation based 

on libopencore-amrnb. Based on the name, we can 

see that that AMR-WB uses 16 kHz sample rate 

and also higher bitrate, ranging from 6.6 kbps to 

23.85 kbps. AMR-WB is the standard codec for 

Voice over LTE (VoLTE) and significantly 

improves quality. 

Adding Noise: We decided to use Gaussian noise, widely 

used in audio field, with such SNR values as: 5 dB, 10dB, 

15dB, 20 dB, 30 dB. 

Signal modification: We are going to apply different 

modifiers to our signal: 

• Sound volume: increasing or decreasing volume 

from -30 dB to 30 dB. 

• Applying masks to the time and frequency planes of 

spectrograms. For time mask, masked area will 

range from 0.1s to 0.5s, for the frequency mask it 

will range from 250Hz to 1500Hz. 

• Time stretching: speeding up or slowing down the 

original audio by 0.5x, 1.5x and 2x [8]. 

IV. -TESTING PROTOCOL RESULTS 

In this section we will run a series of EER-metric tests by 

augmentation of the original dataset with methods 

described, and we will also measure the metrics with the 

passive methods that were described in previous section. For 

repeatability of experiments, we will use the VoxCeleb-1 

speaker verification datasets. As a base model, we will use 

ResNet-34 [9] with TSTP trained on VoxCeleb-2 [10] 

dataset with usage of Kaldi-style [11] F-Banks features. In 

Figure 1, we demonstrated overall statistics for VoxCeleb-1 

dataset, below we have described each feature in more 

details. First, we tested different age groups combinations. 

We split our speakers ages into three groups:  

• young-adult: 18-35 yr 

• middle-aged: 36-55 yr 

• senior: ≥ 56 yr 

 

Table 1. EER for age-pair conditions. 

Age conditions Trials EER 

(%) 

senior - senior 6049 2.04 

middle-aged + senior 5177 1.00 

middle-aged + middle-aged 6576 0.70 

middle-aged + young-adult 7996 1.21 

senior + young-adult  4140 6.90 

young-adult + young-adult 7735 1.00 

 

As shown in Table 1, the highest errors were with senior 

people because of the capabilities of the human body, 

therefore speech capabilities, begin to decline. Having two 

seniors instead of one in comparison, obviously increase 

error, as it shown in comparison with middle-aged and 

senior pairs. The highest error rate occurs with young-adults 

and seniors: degradation of senior’s voice features and not 

fully-developed voice features of young people can boost 

this error significantly, in this dataset and model almost 

seven times, up to 6.9 %. Because there was not enough, 

language diversity in the dataset, main language was 
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English, we decided to only calculate metrics for the English 

with English pairs and all other languages with English.  

 

 

Table 2. EER for language-pair conditions. 

Language conditions 

 

Trials EER 

(%) 

same-language only 32 940  1.07 

cross-language only 4780 0.67 

As shown in the Table 2, it’s easier for the model to separate 

speakers from different languages, probably it’s related to 

the fact that even though the system is text-independent, that 

doesn’t necessarily mean it would be language dependent. 

Unfortunately, as is shows in Pic #, imbalance between 

languages is large, and there is not enough data to draw 

clearer conclusion about other languages and how different 

combinations impact our system. 

Table 3. EER for gender-pair and age-pair conditions. 

Gender and Age 

conditions 

 

Trials EER 

(%) 

same-emotion  22 602  1.08 

cross-emotion 15 118  0.93 

same-gender 29155 1.14 

cross-gender 8565 0.56 

It is noticeable in the Table 3, that if a  pair of speakers has 

different emotions and genders, it noticeably decreases the 

error rate. This is especially can be seen in case, where a 

male and a female speaker were compared. 

 

 

Table 4. EER for SNR conditions. 

SNR level conditions Trials EER 

(%) 

≤ 10 dB 190  7.65 

10 – 20 dB 2050 3.10 

20 – 30 dB 10820 1.10 

30 – 40 dB 15000  0.78 

> 40 dB 9660 0.70 

As we can see in the Table 4, in our dataset there is a  small 

number of examples, where the SNR is lower than 10 dB, 

which can be compared with sound of a subway, this leads 

to an almost eight-fold increase in the error rate. Overall, the 

test shows that office-like conditions (20-30 dB), match 

almost our average metric for the dataset, and that better 

SNR values can improve our results. We can see that our 

model has room for improvement in handling noisy signals. 

Table 5. EER for speech duration conditions. 

Speech duration 

conditions 

Trials EER 

(%) 

2-3 s 31 0 

3-4 s 3014 1.29 

4-5 s 15238 1.04 

5-10 s 17440  0.89 

> 10 s 1997 0.94 

Unfortunately, this dataset contains not a  statistically 

significant amount of 2-3 second audio files to get correct 

metrics, so we obtained only 31 trials, which are not enough. 

Overall, we can see in the Table 5, that increasing speech 

length up to 10 s decreases the error rate, probably because 

the statistical pooling that was used in our model, which 

averages features over timeline and makes our model more 

accurate. However, increasing the audio to more than 10 s 

increases the error rate compared with 5-10s samples, it 

maybe because these examples contain more useless or 

harmful signals than the previous ones. It may also be due to  

the fact that we have only about 2000 samples longer than 

10 s. Because of this, more detailed analyze on another 

dataset is required. 

Overall, our implemented passive and active testing 

methods including metadata extraction, noise simulation, 

codec simulation, and signal modifications enabled us to 

pinpoint specific weaknesses of ResNet-34 VoxCeleb-

trained model, such as significant error increase in low-SNR 

(<10 dB) conditions, cross-age trials involving seniors and 

young adults, and frequency-masked spectrograms. We a lso  

confirmed strengths, including stable performance across 

most codec types, resilience to moderate volume changes, 

and minimal degradation under typical telephony sampling 

rates (16 kHz). These insights provide concrete targets for 

Figure 1. Overall dataset statistics. 
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improving noise robustness, cross-age generalization, and 

frequency-information preservation in future model 

versions. However, it should be noted that, the values that 

we provided cannot be 100% accurate, because detecting, 

age, emotion, language, snr and duration relied on different 

kinds of neural-network models for each task, each of which  

has its own error rate. But even with this inaccuracy in the 

models used, they help us understand overall trends for each  

feature. 

Table 6. Active methods EER statistics 

Condition EER 

(%) 

Downsampling:  

- 16 kHz 1.01 

- 8 kHz 1.97 

Codecs simulating:  

- MP3 1.01 

- AAC 1.00 

- OPUS 1.02 

- GSM 1.21 

- AMR-NB 1.23 

- AMR-WB 1.04 

Gaussian noise (SNR):  

- 5 dB 1.45 

- 10 dB 1.21 

- 15 dB 1.04 

- 20 dB 1.03 

- 25 dB 1.02 

Volume modification  

- -30 dB 1.02 

- -20 dB 1.01 

- -10 dB 1.01 

- +10 dB 1.01 

- +20 dB 1.01 

- +30 dB 1.01 

Speed perturbation:  

- 0.5x 1.06 

- 1.5x 1.06 

- 2x 1.17 

Time masking:  

- 0.1s 1.01 

- 0.25s 1.08 

- 0.5s 1.14 

Frequency masking:  

- 10 bins 1.28 

- 15 bins 1.41 

- 20 bins 1.60 

 

We can easily spot in the Table 6, that downsampling the 

original audio from 16 kHz to 8 kHz almost doubles the 

error rate. But at the same time, using 8 kHz codecs, such as 

GSM and AMR-NB, does not increase the error rate at the 

same extent because these codecs are adopted to compress 

human voice much better, than simple downsampling. 

Overall, the other codecs behave close to the original 

version, which shows that original model was very well 

trained with different codecs. The original training pipeline 

of the model used Gaussian dithering, so it was trained to 

ignore even significant SNR levels of this kind of noise. 

Changing the volume in either direction did not significantly 

change our results. 

Altering the playback speed to 0.5x or 1.5x changed the 

error rate by only for 0.05%, but 2x increased it by 0.16%. 

This is also related to our pipeline, which already uses speed 

perturbations of 0.9x and 1.1x to the original samples. We 

also applied time and frequency masking, while time 

masking, even 0.5s didn’t affect to much our error rate, it 

probably because overall our dataset examples speech length 

starts at least from 3 seconds, so, loosing a random 0.5s 

segment is not too harmful. However, frequency masking 

(mel-bin masking) is different, even the smallest masking of 

a random 10-bin range caused the EER rise to 1.28 %. And 

this was a  random 10-bin range masking, masking the 10 

first bins would increase the error rate, because the first 255 

Hz contain more fundamental voice information than other 

frequencies. This is probably because the original training 

pipeline did not use SpecAugment [12], which masks 

random parts of input spectrogram, so our model is less 

resistant to losing certain parts of the information. 

V. CONCLUSION 

The proposed methodology consists of two complementary 

components designed to cover both real-world and synthetic 

stress testing of speaker verification systems. Passive 

analysis - automatic extraction of comprehensive metadata 

for every test sample, including codec type and parameters, 

sampling rate, spoken language, speaker age group, gender, 

emotion category, background noise level (SNR), and 

utterance duration. This analysis allows us to correlate 

model performance with specific acoustic and demographic 

conditions without manually inspecting each recording, 

enabling large-scale, objective evaluation. Active simulation 

- systematic application of controlled signal degradations to 

replicate challenging real-world scenarios in a reproducible 

way. These include downsampling to telephony and sub-

telephony bandwidths, applying a variety of common speech 

codecs (MP3, AAC, OPUS, GSM, AMR-NB/WB) at fixed 

bitrates, injecting Gaussian noise at defined SNR levels, 

altering playback volume, applying spectro-temporal 

masking, and performing speed perturbations. This 

controlled augmentation ensures that all conditions are 

tested consistently, independent of dataset limitations. 

Together, these components form a standardized, fully 

automated testing protocol that not only evaluates how a 

given model performs under diverse acoustic and 

demographic conditions, but also reveals its exact points of 

failure. The approach is dataset-agnostic, scalable, and can 

be extended to related speech-processing tasks such as anti-

spoofing, diarization, and automatic speech recognition.It 

will help us not only compare different models, but also gain 

a deeper understanding of our current dataset and model f o r 

further improvements, which is not possible during manual 

testing’s or by averaging overall datasets samples scores. 

The implementation of the proposed passive and active 

testing protocol is publicly available [13]. 

In future work, the author will explore adding additional 

methods that can be useful for other types of models and 

will also work on increasing the accuracy of the methods 

currently used. 
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