
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

83

Abstract—The study systematizes existing approaches by

chronological principle and categories. The strategy of

searching for sources consists of using modern library platforms

and keywords on the topic of program generation. We classified

program generation methods and identified the following types

and their instances. Template methods generate a program

using natural language, UML diagrams, and formal

specifications, as well as code generation for specific platforms,

including emulation of processor architectures. The CASE

methods convert high-level descriptions into executable code,

including generation in Isabelle/HOL and the use of multi-level

rule sets. We analyzed model-based code generation methods,

including polyhedral models and the Ptolemy platform. We

reviewed tools using of genetic algorithms for creating program

code. Compositional programming is represented by the

SPIRAL, KLEE projects and other modern developments. A

separate type is made up of methods based on artificial

intelligence and machine learning, including neural network

architectures (AlphaCode, CODEnn) and large language

models (CodeBERT, Code Llama). We identified their

advantages and areas of application for the types. The types are

presented as a scheme that corresponding to directions of

development of program generation methods. The study

revealed a tendency to move from traditional template methods

to technologies based on large language models and machine

learning. We will use results of this review in our study on

generation of programs that transform arrays.

Keywords—software code generation, development

automation, template methods, CASE, UML, evolutionary

algorithms, compositional programming.

I. INTRODUCTION

Automatic program generation is the process of creating

software to solve a specific problem with minimal human

involvement. The program that implements this process is a

code generator. The complexity of modern applications

requires new approaches to development, which stimulates

the development of automation based on various principles:

from template programming to methods based on artificial

intelligence.

With the right conditions and parameters, and correct

development of the generator, most of the code can be created

automatically. The programmer only has to manually

complete the rest of the work and test it. The generator

includes the following key components:

• program code templates – samples according to which

the code will be created;

Manuscript received April 18, 2025.

D. Borodin is with Lipetsk State Pedagogical University, 398020, Lenin str.,
42, Lipetsk, Russia (e-mail: mail@prutzkow.com).

• domain metadata – the structure that needs to be modeled

in the program;

• domain rules – parameters that define the structure and

behavior of domain metadata, usually implemented in

the generator program itself [1].

The use of generation in the development of the project's

program code reduces human involvement, which provides

the following advantages:

• using a generator ensures that the generated code

matches the originally designed application structure and

templates;

• when requirements change, it is possible to update

templates, generator and/or metadata and output a new

version of the code;

• after defining the metadata, the code generation process

takes less time than human code creation;

• the generated code has no errors;

• the generator creates code in accordance to coding

conventions.

There are various approaches to program generation,

which can be classified according to several criteria.

Several reviews on program code generation have been

published, but they cannot reflect the latest advances in

research in this area. First, several reviews were published

more than a decade ago, so they cannot cover the latest

algorithms (reviews of 2000 [2], 2012 [3], 2013 [4], 2015

[5]). Second, modern reviews focus on the capabilities of

code generation using large language models (LLM) and do

not show the chronology of the development of these methods

[6, 7, 8]. To fill the research gap, this paper provides an

review of the types of program generation methods.

II. PURPOSE OF THE STUDY

The purpose of the study is to systematize and analyze

program generation methods for further developing a method

for generating array processing programs. The paper

examines various approaches to source code generation, their

classification and practical application. The paper is intended

to form the state-of-art of program generation, identify

development trends and determine perspective areas for

future research.

The results of the conducted analysis of methods to

program generation will be used in our research on the

development of a method that generates of programs for the

transformation of arrays.

A. Prutzkow is with Ryazan State Radio Engineering University, 390005,

Gagarin str., 59/1, Ryazan, Russia, and with Lipetsk State Pedagogical
University, 398020, Lenin str., 42, Lipetsk, Russia (e-mail:

mail@prutzkow.com).

Program Generation Methods:

Types and Instances

Daniil Borodin, Alexander Prutzkow

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

84

III. RESEARCH METHODOLOGY

We investigate program generation methods by a systematic

literature review. The review included a search strategy and

publication selection by date.

The sources of literature were well-known online libraries

of scientific publications on computer science and artificial

intelligence, namely IEEE Xplore, ACM Digital Library,

SpringerLink, INTUIT, ArXiv, CyberLeninka. Google

Scholar was used to search for publications included in other

libraries as well.

Keywords that we use in search queries are: code

generation, program code generation, code generation,

program code generation. The target interval is from 2000 to

2024. But there is a earlier paper [9] that is necessary for

understanding the beginning of the development of the type

of program generation specified in the paper.

IV. TYPES OF PROGRAM GENERATION METHODS

We divide methods to program generation by chronology and

by type. The emergence of new methods is associated with

the development of computer science and artificial

intelligence (AI) in recent years.

To systematize methods to program generation, the

following types can be distinguished:

1. Template methods

One of the earliest methods to program generation since the

1970s is template-based code generation. Software source

code is generated based on predefined templates, which

contain both static elements and dynamic placeholders for

inserting data or logic. These templates depend on specific

task parameters and are created using specialized template

description languages, which allows developers to quickly

generate complex code fragments while maintaining

architectural consistency. This type reduces the likelihood of

errors that occur when manually writing repetitive or similar

blocks, and also simplifies project scaling by changing input

data without having to rewrite the templates themselves. The

following subtypes of generation methods can be attributed

to this method.

1.1. Natural Language Generation (NLP)

It consists of converting descriptions in natural language into

program code.

1.1.1. One of the first studies in this area [9] proposed a

natural language system that generates the corresponding

source code using a program description. The system checks

the completeness of the description. If the first specified

description is sufficient, the program will create a

corresponding problem-solving scenario with an answer. If

the program description is insufficient, the system will ask

questions to resolve the ambiguity until it is eliminated.

1.1.2. The use of the newly developed controlled

processing language (CPL) language for code generation is

proposed in [10]. CPL receives descriptions in natural

language and generates an intermediate representation that

limits the obtained characteristics to a subset of natural

language and allows for better perception and creation of

code. In addition, this language uses heuristics to resolve

ambiguity in descriptions in natural language.

1.1.3. An end-user programming paradigm in Python is

proposed in [11]. The Vajra system generates Python code

fragments from a natural language description. The user

enters a natural language command at a specific place in the

source code. The system then generates a list of possible

operators and associated parameters that are most similar in

semantics. There are procedures that the user can select to

resolve ambiguities in the process by choosing from several

candidate fragments.

1.1.4. DeepPseudo [12] is a method for generating

pseudocode in natural language using code feature extraction

and transformers. It uses the Transformer encoder for

analysis, extracts local semantic features through a special

module, and then uses a pseudocode generator to represent

the algorithm textually.

1.2. Generation based on UML diagrams

It is a process of automatic creation of program code from

unified models presented in the form of diagrams of various

kinds.

1.2.1. The application of the type was proposed in [13].

The GenERTiCA framework generates code for distributed

real-time embedded systems based on modeling and aspect-

oriented programming. During the design process of the

system, UML diagrams are developed. The diagrams describe

architecture and non-functional requirements, such as time

constraints, fault tolerance, and security. GenERTiCA then

generates the source code, including parts that are separated

from the main logic, and integrates them into the code base at

the compilation stage.

1.2.2. A similar study [14] specifies that it is necessary to

use class diagrams for UML modeling and code generation

based on them. An important point is that associations should

be implemented as classes when generating code based on

diagrams. This approach helps to solve problems with

multiple relationships, aggregation, and associative classes.

1.2.3. The code generation process includes three main

phases: input, transformation, and output [15]. In the input

phase, the system accepts UML diagrams in XMI format.

These diagrams are processed by XMIParser, which creates

metamodel instances for each diagram. Then, in the

transformation phase, CodeGenerator uses these metamodels

to generate isolated code for each diagram: the structure is

formed based on the class diagram, the control flow of

methods is based on sequence diagrams, and object

manipulations and user interactions are added through the

actions of activity diagrams.

1.2.4. Another method for generation of Java code from

UML diagrams using XMI representation is proposed in [16].

The diagrams are modeled in the BOUML tool, exported to

XMI, from which metadata is extracted, and Java code is

generated based on them.

1.2.5. In [17], a framework for generation of programs

based on a visual model created by the user and on a data flow

diagram, is described. The framework is a client-server

application and uses the developed data storage format. The

conducted studies have shown that the framework is suitable

for automating complexly structured tasks when developing

the original model and can be used to speed up data

processing.

1.3. Generating code for specific platforms

It is a process of creating software code optimized for specific

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

85

hardware or software environments. This approach includes

emulation of various processor architectures, automatic

translation of serial code into parallel code.

1.3.1. In [18], the architecture and operating principles of

QEMU, a machine emulator using portable dynamic

translation to emulate multiple processors (x86, PowerPC,

ARM, Sparc) on various platforms, are proposed. The main

component of the system is the dynamic code generator

dyngen, which translates the instructions of the target

processor into micro-operations represented by fragments of

C code compiled with GCC. These micro-operations are

combined into the executable code of the host machine,

which cached for reuse.

1.3.2. The framework [19] allows engineers to create

sensor network components at both the application and

protocol levels. The framework is based on Simulink,

Stateflow, and embedded components of Coder. These

components are building blocks for modeling, simulation,

and subsequent code generation for various target platforms

and operating systems.

1.3.3. The system automatically converts the sequential C

code into parallel CUDA code [20]. The program is analyzed

through an abstract syntax tree (AST), iteration space

polytopes, and data dependencies are extracted. Based on

them, affine transformations are created, which are used to

generate operator domains. The final code is formed using a

polyhedral generator, such as CLooG.

1.3.4. Generating EMF-compatible code in the Fujaba

program development system [21] involves two approaches:

(1) directly generating Java code from Fujaba models or

(2) creating an Ecore file and then processing it with the EMF

generator. Structural elements are converted to Ecore

elements, and behavioral models are generated as separate

Java code and integrated with the main structure. An example

is a task management project, where the generator creates an

Ecore file and Java code, which are combined by the EMF

generator into a finished program.

1.4. Generating programs based

on formal specifications

These are methods of generating software code based on

rigorous mathematical descriptions of the requirements and

behavior of a system.

1.4.1. The KVEST methodology [22] is focused on

automated test generation and software verification based on

formal rules. The key aspect is the use of explicit

specifications that describes not only specific values, but also

classes of acceptable values. This approach, combined with a

model-oriented method and abstract data structures, makes it

possible to create implementation-independent specifications

that serve as the basis for subsequent generation of test sets

as well as test coverage assessment through a modified

criterion of a perfect disjunctive normal function.

1.4.2. There is a code generation mechanism: the control

policy is specified in a high-level programming language and

then automatically converted into the source code for a

specific problem [23]. This approach eliminates the need for

significant time costs and deep knowledge of code

optimization. The study shows that the use of code generation

solves a wide range of control problems and achieving

increased performance compared to traditional general-

purpose solvers.

1.5. Code generation for distributed systems

It is a process of generating program designed to run in a

distributed computing environment.

1.5.1. In [24], a method for generating code for linear

program sections is based on the exact joint solution of the

problems of selecting and scheduling instructions, taking into

account the restrictions on the number of registers. The

advantages of the approach are: consideration of parallelism,

code optimization when there is a shortage of registers, and

automatic use of instructions with multiple results. The

proposed algorithm improves the compilation process,

providing a more optimal distribution of resources and

increasing processor performance.

1.5.2. The GCD distributed computing system [25]

integrates created modules and simplifies the process of

prototyping complex engineering systems. The software

toolkit includes a specialized template format, a library of

functions for their interpretation, and a system of

initialization files for source data.

1.6. Using the CASE tools that generate program code

based on models or specifications

It is a form of implementation of a template method, which

automates the process of converting high-level descriptions

into executable code. Modern CASE tools are based on

methodologies of structural or object-oriented analysis and

design, which formalizes the stages of program development

and minimizing the influence of third-party factors. In such

methodologies, specifications are used to describe external

requirements for the system, including text descriptions, use

case diagrams, class, sequence and activity diagrams [26].

There are the studies related to this type of program

generation:

1.6.1. Code generation in Isabelle/HOL [27] is based on a

multi-stage process, where the key element is the introduction

of an intermediate language, Mini-Haskell. The language is a

bridge between the source higher-order logic with type

classes and the target functional programming languages. The

semantics of both the source language and Mini-Haskell are

specified in terms of higher-order rewriting systems, which

provides the basis for proving the correctness of the

translation. This allows functions and data to be replaced by

more efficient analogues within a single process.

1.6.2. Modeling systems by an analyst together with a

subject area expert is proposed in [28]. During the ongoing

dialogue “author-reader”, the model diagrams are

constructed, verified, and corrected. The developed structure

is supplemented with a quantitative assessment as well. For

this purpose, the AllFusion Business Process Modeler

package uses cost indicators of work, the so-called ABC

analysis and user properties of user defined properties

processes. The presented approaches allow for the program

generation.

1.6.3. In the method [29], user enters the data of the entity

structure and its attributes. The data are written to a unified

storage (relational database) containing information about the

template structure. After saving the data, to ensure reliability

and scalability, another process reads the data, analyzes it,

and then generates code.

In parallel with the template methods, another type of

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

86

program generation was developed that required

consideration.

2. Code generation based on models

This type is a methodology for converting high-level software

specifications into executable code by using formal models

and transformation algorithms. This approach covers various

methods, including code generation based on state diagrams,

where automata transition graphs are the basis for creating

programs with explicitly allocated states, and generation

based on class diagrams, which forms the structure of object-

oriented code. Particular attention is paid to creating code for

real-time systems, where synchronous data flows and finite

automata models are translated into code analyzed relative to

the worst case of execution. Modern research is aimed at

improving transformation algorithms and optimizing both the

size of the generated code and the efficiency of the generation

process itself. Let us consider the instances of the type.

2.1. A polyhedral model for code generation formalizes

data and computation dependencies that simplifies program

optimization, especially in the context of parallel computing

[30]. Code generation includes automatic partitioning of

computations, task redistribution, and optimization of

execution order, which improves performance with

multitasking and multi-core systems.

2.2. A method for generating code with a polyhedral model

is a process of converting multidimensional representations

of program cycles back into executable code, including the

stages of design and separation of domains [31]. In this case,

to improve scalability, methods for removing scalar

dimensions and the use of domain iterators are used, which

processes complex transformations and large programs with

many operators.

2.3. The Ptolemy platform [32] transformes of models into

executable code for embedded Java systems. These models

are specified in advance and describe the behavior of the

system and its interaction with external resources.

2.4. The method of generating a modeling program uses

the translation of a control machine, specified in the form of

a table or graph, into a production algorithm [33]. The

production algorithm is presented in a text file, which is fed

to the input of the generating program. The output is a

program that models the specified machine.

2.5. Software can be developed based on a multi-level set

of rules for generating software source code [34]. Metagraphs

are chosen as the presentation structure. A model for

generating software source code is presented, as well as a

design methodology using a generation system based on a

multi-level set of rules. The problem of developing automated

tests within the framework of the proposed approach is

considered.

2.6. The process of developing tests designed to check the

coherence of memory accesses can be performed in the

Elbrus assembly language [35]. The approach generates

impacts for a test system that combines the RTL model of the

processor with the software model of the memory subsystem.

The test generator automatically creates sequences of

operations that model various situations, including possible

errors and coherence violations, which identifies problems at

early stages of development.

2.7. The code2seq model [36] generates sequences of

program code tokens based on its structural representation in

the form of AST paths. The approach is based on the use of

an architecture that uses neural networks with an attention

mechanism, allowing the model to focus on the most

informative AST fragments when predicting the output

sequence. This approach outperforms previous models

specifically designed for programming languages, as well as

neural machine translation models.

2.8. ReCode [37] is a method based on extracting a subtree

with links to existing code examples in a neural code

generation model. Sentences that are similar to the input ones

are extracted using a sentence similarity scoring method

based on dynamic programming. Then, 𝑛-grams of action

sequences that produce a related AST are extracted. As a

result, the probability of actions that will cause the resulting

𝑛-gram action subtree to be in the predicted code is increased.

2.9. The problem of generation of commit messages is

important for understanding code changes in frequent

software updates. The authors of the study [38] propose a new

model called ATOM, that uses AST to represent the structure

of changed code, which helps to better account for its

semantics. The model integrates both extracted and generated

messages through a hybrid ranking module that selects the

most appropriate message for a particular code change.

2.10. A tool for creating directed graphs based on a

deterministic finite automaton simplifies the writing of

program code [39]. In it, the program structure is presented

as an automaton, where the states are different stages of the

algorithm execution, and the transitions are determined by

control structures. The transformation of such a

representation into code is carried out taking into account

predefined rules and templates.

With the use of the two code generation technologies

discussed, it became clear that it was necessary to improve

the process using previously developed algorithms.

3. Generating programs based on search and evolutionary

algorithms

This type methods treat the creation of program code as an

optimization problem or as a search for a solution in a space

of possible options. These approaches are based on the

principles of simulating natural evolution, where programs

are formed by successively applying mutation and selection

operations to achieve the desired behavior. One of the early

examples is the use of genetic algorithms to create ROP

chains, where the process begins with analyzing the

executable file, identifying potentially useful code fragments,

parameterizing them, and further optimizing them through

mutations and fitness assessment. Another direction is the use

of evolutionary algorithms to solve logical problems, where

state generators form sets of solutions that are subject to

iterative optimization. Particular attention is paid to the use

of semantic information and modern machine learning (ML)

methods to improve the quality of generation. Let us consider

current studies of this type:

3.1. The Spi2Java tool [40] generates Java code

implementing the cryptographic protocols described in the

formal specification of the spi calculus language. Spi2Java is

part of the Spi calculus toolkit, which also includes a

preprocessor, a parser, and a security analyzer. The latter

analyzes protocols and identifies their weaknesses. Once a

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

87

protocol has been analyzed and sufficient confidence in its

correctness has been achieved, Spi2Java creates an

implementation of it in Java, thereby reducing the risk of

introducing vulnerabilities at the programming stage.

3.2. Code generation for solving convex optimization

problems is possible using the CVXGEN tool [41]. Based on

a high-level description of such problems, CVXGEN creates

specialized C code that is compiled into a solver. The focus

is on problems that can be transformed using convex

programming techniques into small-size convex quadratic

programs.

3.3. The ROPER tool [42] uses genetic algorithms to create

ROP chains for the ARM architecture. First, parts of the

program are found in the executable file, their parameters are

calculated, and then the file is loaded into a virtual machine

to test the chains. Genetic mutations change the addresses of

program parts and data on the stack, and fitness is estimated

by the difference between the current and target register

values.

3.4. Programs in the Prolog language are generated

through a declarative description of state generators that form

the solution search space [43]. The approach uses of bit

chains to represent the states of objects and bitwise operations

to generate new states, while the process of constructing a

solution itself is implemented through recursive

computational procedures without the need to store the full

state graph in memory. Generators can either save the history

of previous states for step-by-step construction of a solution,

or work without it, relying only on the current state.

3.5. In [44], hash functions are used for obfuscating

program code are considered. Taking into account the

features, a method of program generation is proposed, based

on the genetic programming approach using the fitness

function and an algorithm that is repeated a certain number of

times, depending on the input data. Generation is carried out

by combining bit and arithmetic operations, as well as

pseudo-random permutations, which ensures high entropy

and resistance to reverse analysis.

3.6. A genetic algorithm for code generation can be used to

solve the problem of finding the minimum of a function of

two variables without using derivatives [45]. The results

obtained showed that the approach was able to write a

program that solves a computational problem, and also, if

necessary, improve a human-written algorithm.

With the development of program code and the creation of

specialized online platforms for its storage and exchange, a

method of generating programs based on the principles of

compositional programming emerged.

4. Compositional programming

This type is a software development methodology based on

the principle of forming predefined components or modules

to create complex software systems. The approach is

characterized by a high degree of modularity and code reuse,

which is especially important in the context of modern

development methods such as microservice architecture and

distributed systems.

4.1. The SPIRAL project [46] generates code tailored to a

specific architecture by formulating the tuning problem as an

optimization problem using the mathematical structure of

DSP algorithms and a feedback mechanism. The system can

generate code for transforms such as the discrete Fourier

transform and wavelet transform, as confirmed by

experiments.

4.2. KLEE [47] is a symbolic execution tool that can

generate tests with high coverage. KLEE operates on the

basis of symbolic code execution, where input data is

represented as symbolic values rather than specific numbers,

which explores many possible program execution paths. The

system uses a constraint solver to generate specific test cases

that reproduce detected errors in the source code.

4.3. To improve the quality of C language compilers, the

Csmith tool was created to generate random test scenarios to

detect errors in compilers using differential testing [48]. The

language generates programs with no undefined behavior due

to control over the language constructs used and their

combinations. The resulting programs comply with the C99

standard at both static and dynamic levels.

4.4 The Julia programming language [49] is designed for

technical computing with a focus on high performance and

dynamic typing. It provides tools for compile-time code

generation using functions. This allows users to write

optimized code and extend the output type system.

4.5. In [50] it is shown that currently there are no universal

integrated development environments with semantic editing

of program code. The creation of such environments can

significantly increase the productivity of the programmer,

due to semantic editing and the function of the version control

system, tracking not textual changes, but changes in the

abstract model of the program code.

4.6. The C code could be generated from a parametric

description of a quadratic program (QP) as input [51]. The

resulting code is compiled into an optimization solver for QP

that can run on embedded platforms. In addition, this code is

based on operator splitting quadratic program (OSQP). It is a

new open source solver for quadratic programming. The

generated C code is library-free and minimal in size.

4.7. In [52], a system for generation of parallel code from

fragments of the C programs using the OpenMP polyhedral

optimization model is presented. It improves parallelism and

code accuracy through integer linear programming to find

suitable affine transformations.

4.8. Generation of monitoring programs for technical

objects is presented in [53]. The proposed structure consists

of several subsystems: data integration, information

acquisition and processing, generation of models of observed

objects and data collection processes. The structure uses the

inductive-deductive approach to constructing models of

objects based on the data received from them. Interaction is

carried out with 𝑛-dimensional vectors of numerical values

characterizing the states of the elements of objects at certain

points in time. In this case, the drivers perform preliminary

aggregation and normalization of data before transmitting

them to the system.

4.9. In [54], the following set of operations are used for

code generation in loops: optimization of sequential

transitions, calculation of the number of loop repetitions

before the loop body, use of a delay slot, induced variables,

and removal of unnecessary inductive variables.

4.10. REDCODER is an extraction framework that obtains

code or summary data from a database and provides it as an

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

88

adjunct to code generation or summarization models [55].

REDCODER has a couple of unique features: (1) it extends

the capabilities of modern data mining to find relevant code

and (2) it can work with databases that include unimodal

(code or natural language description only) or bimodal

instances (code-description pairs).

The creation of ML and AI technologies has led to the

development of new methods for generating programs based

on these technologies. Many articles are currently devoted to

this method.

5. Methods based on artificial intelligence and machine

learning

They are a modern approach to program generation based on

the use of natural language processing (NLP) algorithms,

neural networks, and LLM for the automatic creation of

program code. This approach has been actively developed

since 2012 and demonstrates significant potential in the tasks

of converting descriptions in natural language into executable

code, as well as in the tasks of optimizing and improving

existing programs. Let's consider the categories of research

devoted to this topic.

5.1. Neural network architectures

Code generation uses neural networks and NLP technologies

to transform text descriptions into executable code.

5.1.1. AlphaCode is a code generation system that solved

54.3% of the problems in the latest programming competition

on the Codeforces platform [56]. AlphaCode solves problems

by generating millions of diverse programs using specially

trained transformer networks, and then filtering and

clustering these programs into a maximum of 10

representations. This is the first time that an AI system has

shown competitive results in a programming competition.

5.1.2. The method of generating input data for fuzzy

testing of JavaScript interpreters improves the quality and

speed of fuzzy testing [57]. The data is generated using neural

networks and compilation with subsequent fragmentation of

AST and aggregation of fragments. Using the method, it was

possible to form a new set of input data. The method of

generating semantically correct code for fuzzy testing

provides coverage of 44.4% by lines of code and 51.2% by

functions.

5.1.3. The CODEnn neural network is trained to find

semantic similarities between a natural language description

and a code fragment [58]. The study is based on the

representation of the program in the form of vector spaces,

which matches queries with code fragments, taking into

account their semantic features. When the code fragment and

the description are semantically similar, the embedded

vectors will be close to each other.

5.1.4. The methodology for automating the creation of

control programs for the CNC machines is considered in [59],

where the key aspect is the use of intelligent systems, in

particular neural networks, to solve the problem of generating

and verifying control programs. At the same time, the need to

use ML to analyze various processing parameters, such as

tool types, cutting modes and motion paths, is emphasized,

which increases the efficiency and safety of the mechanical

processing action.

5.1.5. The Prophet system generates code fixes (patches)

by training on a set of successful patches written by

programmers and obtained from open source repositories

[60]. Prophet uses a parameterized probabilistic model to

assign a correctness probability to each candidate patch in the

search space, based on universal characteristics of correct

code that are identified and learned through statistical

analysis.

5.1.6. A method analyzes natural language descriptions to

generate Python code fragments [61]. The simulated neural

architecture uses a probabilistic grammar model to explicitly

capture the syntax of a programming language as a priori

knowledge. This approach was also found to be effective in

generating complex, multi-layered programs.

5.2. Large language models

They generate code using scalable transformer-based

architectures trained on huge amounts of text data and

program code.

5.2.1. Methods for generating malicious software code

using several LLM are proposed in [62]. Compromise

identifiers can be recognized from the generated code parts.

It is shown that the code created using LLM has certain

characteristics that can be detected by antiviruses.

5.2.2. CodeBERT is a bimodal pre-trained model for the

PL programming language and the NL language [63]. The

model uses a neural architecture based on Transformer and is

updated using a hybrid objective function that includes a pre-

training task to detect replaced tokens, which consists of

identifying plausible alternatives sampled from generators.

CodeBERT searches natural language code and generates

code documentation.

5.2.3. Evaluation of LLM for Python program synthesis in

MBPP and MathQA-Python benchmarks is considered in

[64]. The results show that the performance grows

logarithmically with increasing model size. The largest model

without additional training solves 59.6% of MBPP problems,

and additional training increases the accuracy by 10%. On

MathQA-Python, the accuracy reaches 83.8%. Human

interaction, including feedback, reduces errors by half. The

analysis revealed difficulties with generating complex

programs and limited ability of models to predict execution

results.

5.2.4. Code Llama is a family of LLM based on Llama 2,

designed for programming tasks [65]. All models are trained

on sequences up to 16,000 tokens long and show improved

results when processing inputs up to 100,000 tokens. The 7B,

13B, and 70B variants of the models support the feature of

filling in the surrounding content. In the HumanEval and

MBPP tests, Code Llama achieves accuracy of up to 67% and

65% respectively, outperforming other available models.

5.2.5. Using ChatGPT for code generation [66] has a high

degree of non-determinism under the default setting: the

proportion of coding tasks with zero equal test yield across

different queries is 75.8%, 51.0%, and 47.6% for three

different code generation datasets: CodeContests, APPS, and

HumanEval, respectively.

5.2.6. In [67], the problem of software synthesis is

considered as a task of creating a program based on

specifications, through input-output examples or natural

language, using LLM for code generation. A family of

models CODEGEN trained on natural and programming

language data is presented. A multi-stage approach to

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

89

software synthesis is also investigated through the creation of

an open benchmark MTPB, which showed an improvement

in synthesis when using multi-turn hints compared to a single-

stage method.

V. FURTHER DISCUSSIONS

The study of current methods of generating program code

demonstrates several main vectors of its development. The

issue of improving the quality of created programs is most

actively considered. At the same time, special attention is

paid to the last stages of the development of generation

systems, in particular, to the tasks of calculating the

compliance of the generated code with the original

requirements. However, the initial stage of forming a

candidate database remains insufficiently studied, despite its

importance for the entire process.

There is a tendency to consider individual stages of the

generation algorithm as independent components. This

requires a revision of approaches to the design of code

generation algorithms.

Modern research is moving away from traditional

template-based methods to technologies using AI and ML.

LLM show potential in tasks of converting natural language

descriptions into executable code and optimizing existing

programs. However, traditional methods such as

compositional programming and the use of CASE tools

continue to evolve and find application in various subject

areas.

The integration of various code generation methods could

significantly improve software development results. A

promising direction is also the creation of reference data sets

for the unification of evaluation methods and the

development of research in the field of generation of program

code.

VI. TYPE SUMMARY

We present the summary of program generation methods as a

scheme (see fig.).

The scheme reflects the considered directions of

development of program generation methods. Each block of

the scheme corresponds to the type of program generation.

VII. APPLICATION IN OUR STUDY

Key aspects useful for the developed method of generating

programs for array transformation based on the depth-first

search (DFS) algorithm include: template approaches for

parameterization of array transformation operations,

evolutionary algorithms as a source of ideas for search

strategies, and work with state graphs, where DFS provides

enumeration of transformation paths.

Types and subtypes of program generation methods

The review revealed gaps in the systematization of the

initial stages of generation, which the method fills by

modeling the state space of the array as a graph, where nodes

are intermediate states, and edges are admissible operations.

Thus, the review confirms the relevance of the combination

of DFS with templates and the identification of areas for

improving the method for generating array processing

programs.

Program generation

methods

Natural Language

Generation

Template method

Generation based

on UML diagrams

Generating code

for specific

platforms

Generating

programs based

on formal specific

ations

Code generation

for distributed

systems

Using CASE tools

Code generation based

on models

Generating programs

based on search

and evolutionary

algorithms

Compositional

programming

Methods based

on artificial intelligence

 and machine learning

Neural network

architectures

Large language

models

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

90

VIII. CONCLUSIONS

Program generation is a dynamically developing field that

actively uses template approaches, artificial intelligence,

evolutionary algorithms, and compositional methods. Further

research focuses on the integration of these methods, which

can significantly improve the efficiency of software

development.

An analysis of existing approaches shows that each

program generation method has its own specifics and areas of

appropriate application. Traditional template methods and

CASE tools remain in demand for solving well-formalized

problems, while modern technologies based on LLM open up

new possibilities in software development automation.

Further development of the field of program code

generation will be largely determined by progress in the field

of AI and NLP. At the same time, the need for a systematic

approach to the design of generation algorithms, taking into

account the interrelationship of all stages of the process of

creating program code, remains important.

This paper presents a review of modern methods of

software code generation, demonstrating the important role

of AI and ML technologies in the development of this field.

Compared with existing reviews, this paper classifies code

generation methods more clearly, covering both traditional

template approaches and the latest advances in neural

network technologies over the past decade. Particular

attention is paid to the relationship between the various stages

of the code generation process and their impact on the final

result. The review should become a valuable reference not

only for researchers seeking to develop code generation

technologies, but also for practicing programmers wishing to

choose the most appropriate tools and approaches for their

projects.

REFERENCES

[1] Aldan A. Vvdenie v generaciu programmnogo koda [Introduction to
Program Code Generation] [Electronic Resource]: Study Course /

Author: Askar Aldan; INTUIT.ru. 2025. URL:

https://intuit.ru/studies/courses/4432/975/lecture/14619?ysclid=m5lan
d94x3873782162 (accessed: 02/09/2025). [in Rus].

[2] Bhartacharyya S.S. et al. Software Synthesis and Code Generation for

Signal Processing Systems // IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 2002, 47(9):849-

875.

[3] Domı E. et al. A Systematic Review of Code Generation Proposals
from State Machine Specifications // Information and Software

Technology, 2012, 54(10):1045-1066.

[4] Bajovs A. et al. Code Generation from UML Model: State of the Art

and Practical Implications // Applied Computer Systems, 2013.

[5] Gurunule D., Nashipudimath M. A Review: Analysis of Aspect

Orientation and Model Driven Engineering for Code Generation //
Procedia Computer Science, 2015, 45:852-861.

[6] Shin J., Nam J. A Survey of Automatic Code Generation from Natural

Language // Journal of Information Processing Systems, 2021,
17(3):537-555.

[7] Dehaerne E. et al. Code Generation Using Machine Learning: A

Systematic Review // IEEE Access, 2022, 10:82434-82455.
[8] Cambaz D., Zhang X. Use of AI-Driven Code Generation Models in

Teaching and Learning Programming: A Systematic Literature

Review // 55th ACM Technical Symposium on Computer Science
Education, 2024, 1:172-178.

[9] Heidorn G.E. An Interactive Simulation Programming System Which

Converses in English // 6th Conference on Winter Simulation,
1973:781-794.

[10] Clark P. et al. Naturalness vs. Predictability: A Key Debate in

Controlled Languages // Controlled Natural Language. Springer,
2009:65-81.

[11] Schlegel V. et al. Vajra: Step-by-Step Programming with Natural
Language // 24th International Conference on Intelligent User

Interfaces, 2019:30-39.

[12] Yang G. et al. Fine-Grained Pseudo-Code Generation Method via Code
Feature Extraction and Transformer // 28th Asia-Pacific Software

Engineering Conference (APSEC), 2021:213-222.

[13] Wehrmeister M.A. et al. GenERTiCA: A Tool for Code Generation and
Aspects Weaving // 11th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC),

2008:234-238.
[14] Gessenharter D. Mapping the UML2 Semantics of Associations to a

Java Code Generation Model // Model Driven Engineering Languages

and Systems: 11th International Conference (MoDELS), 2008:813-
827.

[15] Usman M., Nadeem A. Automatic Generation of Java Code from UML

Diagrams Using UJECTOR // International Journal of Software
Engineering and Its Applications, 2009, 3(2):21-37.

[16] Vadakkumcheril T. et al. A Simple Implementation of UML Sequence

Diagram to Java Code Generation through XMI Representation //
International Journal of Emerging Technology and Advanced

Engineering, 2013, 3(12):1-5.

[17] Minakova O.V. et al. Postroenie generatora programmnogo koda dlya
reshenia ingenernih zadach [Building a Program Code Generator for

Solving Engineering Problems] // Bulletin of the Voronezh State

Technical University, 2020, 6(3):14-19. [in Rus].
[18] Bellard F. QEMU, a Fast and Portable Dynamic Translator // USENIX

Annual Technical Conference, FREENIX Track, 2005, 41(46):10-55.

[19] Mozumdar M.M.R. et al. A Framework for Modeling, Simulation and
Automatic Code Generation of Sensor Network Application // 5th

Annual IEEE Communications Society Conference on Sensor, Mesh

and Ad Hoc Communications and Networks, 2008:515-522.
[20] Baskaran M.M. et al. Automatic C-to-CUDA Code Generation for

Affine Programs // Compiler Construction: 19th International

Conference, Held as Part of the Joint European Conferences on Theory
and Practice of Software, 2010:244-263.

[21] Geiger L. et al. EMF Code Generation with Fujaba // Fujaba Days,
2007:25-29.

[22] Burdonov I.B. et al. Formalnie specifikacii v tehnolgiah obratnoy

ingenerii [Formal Specifications in Reverse Engineering and Software
Verification Technologies] // Proceedings of the Institute for System

Programming of the Russian Academy of Sciences, 2000, 1:39-54. [in

Rus].
[23] Mattingley J. et al. Code Generation for Receding Horizon Control //

IEEE International Symposium on Computer-Aided Control System

Design, 2010:985-992.
[24] V'yukova N.I. et al. Code Generation by the Method of Exact Joint

Solution of Command Selection and Planning Problems // Software

Engineering, 2014, 6:8-15. [in Rus].
[25] Sokolov A.P. et al. Development of Code Generation Software Based

on Templates for Creating Engineering Analysis Systems // Software

Engineering, 2019, 10(9–10):400–416. DOI: 10.17587/prin.10.400-
416.

[26] Petrenko A.K., Marchuk A.G. Modern Approaches to Software

Development Automation // Software Engineering, 2017, 4:22–30. [in
Rus].

[27] Haftmann F., Nipkow T. Code Generation via Higher-Order Rewrite

Systems // International Symposium on Functional and Logic
Programming, 2010:103-117.

[28] Myshenkov K.S. Metodika obosnovania vibora CASE-sredstv dlya

analiza i proektirovania system upravlenya predpriyatiyami

[Methodology for Justifying the Selection of CASE-Tools for Analysis

and Design of Enterprise Management Systems] // Innovations, 2013,

10(180):112-122. [in Rus].
[29] Tarasiev A.A. et al. Razrabotka prototipa CASE-sredstva dlya sozdania

avtomatizirorannih system na osnove web-prilogeni s ispolzovaniem

generacii koda [Development of a Prototype CASE-Tool for Creating
Automated Systems Based on Web Applications Using Code

Generation] // 28th International Crimean Conference «Microwave

Engineering and Telecommunication Technologies» (CriMiCo),
2018:452-458. [in Rus].

[30] Bastoul C. Code Generation in the Polyhedral Model is Easier than You

Think // 13th International Conference on Parallel Architecture and
Compilation Techniques, 2004:7-16.

[31] Vasilache N. et al. Polyhedral Code Generation in the Real World //

Compiler Construction: 15th International Conference, Held as Part of
the Joint European Conferences on Theory and Practice of Software,

2006:185-201.

[32] Schoeberl M. et al. Code Generation for Embedded Java with
Ptolemy // Software Technologies for Embedded and Ubiquitous

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025

91

Systems: 8th IFIP WG 10.2 International Workshop (SEUS),
2010:155-166.

[33] Dovgal V.M. et al. On the Issue of Solving the Problem of Automatic

Code Generation Based on a Given Control Production Algorithm // In
the World of Scientific Discoveries, 2012, 1(25):220-235. [in Rus].

[34] Samokhvalov E.N. et al. Generaciya ishodnogo koda programmnogo

obespechenia na osnove mnogourovnego nabora pravil [Source Code
Generation of Software Based on a Multi-Level Set of Rules] // Herald

of the Bauman Moscow State Technical University. Series «Instrument

Engineering», 2014, 5(98):77-87. [in Rus].
[35] Burenkov V.S. Generator testov dlya verifikacii protokola

kogerentnosti kashpamyati [Test Generator for Verifying the Cache

Coherence Protocol] // Issues of Radio Electronics, Series ECT, 2014,
3:56-63. [in Rus].

[36] Alon U. et al. code2seq: Generating Sequences from Structured

Representations of Code // arXiv preprint arXiv, 2018:1808.01400.
[37] Hayati S.A. et al. Retrieval-Based Neural Code Generation // arXiv

preprint arXiv, 2018:1808.10025.

[38] Liu S. et al. Atom: Commit Message Generation Based on Abstract
Syntax Tree and Hybrid Ranking // IEEE Transactions on Software

Engineering, 2020, 48(5):1800-1817.

[39] Gitel'man V.S., Tutov I.A. Generacia koda na osnove
determinirovannogo konechnogo avtomata [Code Generation Based on

a Deterministic Finite Automaton] // Youth and Modern Information

Technologies, 2022:299-301. [in Rus].
[40] Pozza D. et al. Spi2java: Automatic Cryptographic Protocol Java Code

Generation From Spi Calculus // 18th International Conference on

Advanced Information Networking and Applications (AINA), 2004,
1:400-405.

[41] Mattingley J., Boyd S. CVXGEN: A Code Generator for Embedded

Convex Optimization // Optimization and Engineering, 2012, 13:1-27.
[42] Fraser O.L. et al. Return-Oriented Programme Evolution with ROPER:

A Proof of Concept // Genetic and Evolutionary Computation

Conference Companion, 2017:1447-1454.
[43] Polovikova O.N., Zenkov A.V. Solving a Certain Class of Logical

Problems in Prolog by Declaring State Generators // Computer Tools
in Education, 2019, 1:54-67. [in Rus].

[44] Lebedev R.K. Automatic Generation of Hash Functions for Program

Code Obfuscation // Applied Discrete Mathematics, 2020, 50:102-117.
[in Rus].

[45] Shintyakov D.V. Opit ispolzovaniya geneticheskih algoritmov dlya

generacii koda algoritmov optimizcii [Experience of Using Genetic
Algorithms for Generating Optimization Algorithm Code] //

Processing, Transmission, and Protection of Information in Computer

Systems, 2020:169-174. [in Rus].
[46] Puschel M. et al. SPIRAL: Code Generation for DSP Transforms //

Proceedings of the IEEE, 2005, 93(2):232-275.

[47] Cadar C. et al. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs // OSDI, 2008, 8:209-

224.

[48] Yang X. et al. Finding and Understanding Bugs in C Compilers // 32nd
ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2011:283-294.

[49] Bezanson J. et al. Julia: A Fast Dynamic Language for Technical
Computing // arXiv preprint arXiv, 2012:1209.5145.

[50] Vanyasin N.V. Semanticheskoe redaktirovanie programmnogo koda v
intelektualnih integrirovannih sredah razrabotki prilozheniy [Semantic

Editing of Program Code in Intelligent Integrated Application

Development Environments] // Cybernetics and Programming, 2017,
1:61-68. DOI: 10.7256/2306-4196.2017.1.18881. [in Rus].

[51] Banjac G. et al. Embedded Code Generation Using the OSQP Solver //

56th IEEE Annual Conference on Decision and Control (CDC),
2017:1906-1911.

[52] Allamanis M. et al. A Survey of Machine Learning for Big Code and

Naturalness // ACM Computing Surveys (CSUR), 2018, 51(4):1-37.
[53] Vodyakho A.I. et al. Systemi avtomaticheskoy generacii programm

monitortinga [Systems of Automatic Program Generation for

Monitoring] // Engineering Bulletin of Don, 2019, 8(59):19. [in Rus].
[54] Arhipov I.S. Generacia optimalnogo obyektnogo koda [Generation of

Optimal Object Code] // Proceedings of the Institute for System

Programming of the RAS (Proceedings of ISP RAS), 2020, 32(3):49-
56. [in Rus].

[55] Parvez M.R. et al. Retrieval Augmented Code Generation and

Summarization // arXiv preprint arXiv, 2021:2108.11601.
[56] Li Y. et al. Competition-Level Code Generation with Alphacode //

Science, 2022, 378(6624):1092-1097.

[57] Kozachok A.V. et al. Method generacii semanticheski korrektnogo
koda dlya fazzingtestirovaniya interprotatorov javascript [Method for

Generating Semantically Correct Code for Fuzzing Testing of

JavaScript Interpreters] // Cybersecurity Issues, 2023, 5:57. [in Rus].
[58] Gu X. et al. Deep Code Search // IEEE/ACM 40th International

Conference on Software Engineering, 2018:933-944.

[59] Solkin A.Yu. Sposobi avtomatizacii sozdaniya upravlyaushih
programm dlya malorezhushego oborudovaniya s CHPU [Methods for

Automating the Creation of Control Programs for CNC Metal-Cutting

Equipment] // Bulletin of the Tatishchev Volga University, 2012,
2(19):165-168. [in Rus].

[60] Long F., Rinard M. Automatic Patch Generation by Learning Correct

Code // 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2016:298-312.

[61] Yin P., Neubig G. A Syntactic Neural Model for General-Purpose
Code Generation // arXiv preprint arXiv, 2017:1704.01696.

[62] Filyukov D.A. Primenenie neironnih setey dlya formirovaniya koda

vredonosnogo programmnogo obespecheniya [Application of Neural
Networks for Generating Malicious Software Code] // Innovations and

Investments, 2023, 7:199-204. [in Rus].

[63] Feng Z. et al. Codebert: A Pre-Trained Model for Programming and
Natural Languages // arXiv preprint arXiv, 2020:2002.08155.

[64] Austin J. et al. Program Synthesis with Large Language Models //

arXiv preprint arXiv, 2021:2108.07732.
[65] Roziere B. et al. Code Llama: Open Foundation Models for Code //

arXiv preprint arXiv, 2023:2308.12950.

[66] Ouyang S. et al. An Empirical Study of the Non-Determinism of
ChatGPT in Code Generation // ACM Transactions on Software

Engineering and Methodology, 2025, 34(2):1-28.

[67] Nijkamp E. et al. Codegen: An Open Large Language Model for Code
with Multi-Turn Program Synthesis // arXiv preprint arXiv,

2022:2203.13474.

