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Abstract—The study systematizes existing approaches by 

chronological principle and categories. The strategy of 

searching for sources consists of using modern library platforms 

and keywords on the topic of program generation. We classified 

program generation methods and identified the following types 

and their instances. Template methods generate a program 

using natural language, UML diagrams, and formal 

specifications, as well as code generation for specific platforms, 

including emulation of processor architectures. The CASE 

methods convert high-level descriptions into executable code, 

including generation in Isabelle/HOL and the use of multi-level 

rule sets. We analyzed model-based code generation methods, 

including polyhedral models and the Ptolemy platform. We 

reviewed tools using of genetic algorithms for creating program 

code. Compositional programming is represented by the 

SPIRAL, KLEE projects and other modern developments. A 

separate type is made up of methods based on artificial 

intelligence and machine learning, including neural network 

architectures (AlphaCode, CODEnn) and large language 

models (CodeBERT, Code Llama). We identified their 

advantages and areas of application for the types. The types are 

presented as a scheme that corresponding to directions of 

development of program generation methods. The study 

revealed a tendency to move from traditional template methods 

to technologies based on large language models and machine 

learning. We will use results of this review in our study on 

generation of programs that transform arrays. 

 
Keywords—software code generation, development 

automation, template methods, CASE, UML, evolutionary 

algorithms, compositional programming. 

 

I. INTRODUCTION 

Automatic program generation is the process of creating 

software to solve a specific problem with minimal human 

involvement. The program that implements this process is a 

code generator. The complexity of modern applications 

requires new approaches to development, which stimulates 

the development of automation based on various principles: 

from template programming to methods based on artificial 

intelligence. 

With the right conditions and parameters, and correct 

development of the generator, most of the code can be created 

automatically. The programmer only has to manually 

complete the rest of the work and test it. The generator 

includes the following key components: 

• program code templates – samples according to which 

the code will be created; 
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• domain metadata – the structure that needs to be modeled 

in the program; 

• domain rules – parameters that define the structure and 

behavior of domain metadata, usually implemented in 

the generator program itself [1]. 

The use of generation in the development of the project's 

program code reduces human involvement, which provides 

the following advantages: 

• using a generator ensures that the generated code 

matches the originally designed application structure and 

templates; 

• when requirements change, it is possible to update 

templates, generator and/or metadata and output a new 

version of the code; 

• after defining the metadata, the code generation process 

takes less time than human code creation; 

• the generated code has no errors; 

• the generator creates code in accordance to coding 

conventions. 

There are various approaches to program generation, 

which can be classified according to several criteria. 

Several reviews on program code generation have been 

published, but they cannot reflect the latest advances in 

research in this area. First, several reviews were published 

more than a decade ago, so they cannot cover the latest 

algorithms (reviews of 2000 [2], 2012 [3], 2013 [4], 2015 

[5]). Second, modern reviews focus on the capabilities of 

code generation using large language models (LLM) and do 

not show the chronology of the development of these methods 

[6, 7, 8]. To fill the research gap, this paper provides an 

review of the types of program generation methods. 

II. PURPOSE OF THE STUDY 

The purpose of the study is to systematize and analyze 

program generation methods for further developing a method 

for generating array processing programs. The paper 

examines various approaches to source code generation, their 

classification and practical application. The paper is intended 

to form the state-of-art of program generation, identify 

development trends and determine perspective areas for 

future research. 

The results of the conducted analysis of methods to 

program generation will be used in our research on the 

development of a method that generates of programs for the 

transformation of arrays. 
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III. RESEARCH METHODOLOGY 

We investigate program generation methods by a systematic 

literature review. The review included a search strategy and 

publication selection by date. 

The sources of literature were well-known online libraries 

of scientific publications on computer science and artificial 

intelligence, namely IEEE Xplore, ACM Digital Library, 

SpringerLink, INTUIT, ArXiv, CyberLeninka. Google 

Scholar was used to search for publications included in other 

libraries as well. 

Keywords that we use in search queries are: code 

generation, program code generation, code generation, 

program code generation. The target interval is from 2000 to 

2024. But there is a earlier paper [9] that is necessary for 

understanding the beginning of the development of the type 

of program generation specified in the paper. 

IV. TYPES OF PROGRAM GENERATION METHODS 

We divide methods to program generation by chronology and 

by type. The emergence of new methods is associated with 

the development of computer science and artificial 

intelligence (AI) in recent years. 

To systematize methods to program generation, the 

following types can be distinguished: 

1. Template methods 

One of the earliest methods to program generation since the 

1970s is template-based code generation. Software source 

code is generated based on predefined templates, which 

contain both static elements and dynamic placeholders for 

inserting data or logic. These templates depend on specific 

task parameters and are created using specialized template 

description languages, which allows developers to quickly 

generate complex code fragments while maintaining 

architectural consistency. This type reduces the likelihood of 

errors that occur when manually writing repetitive or similar 

blocks, and also simplifies project scaling by changing input 

data without having to rewrite the templates themselves. The 

following subtypes of generation methods can be attributed 

to this method. 

1.1. Natural Language Generation (NLP) 

It consists of converting descriptions in natural language into 

program code. 

1.1.1. One of the first studies in this area [9] proposed a 

natural language system that generates the corresponding 

source code using a program description. The system checks 

the completeness of the description. If the first specified 

description is sufficient, the program will create a 

corresponding problem-solving scenario with an answer. If 

the program description is insufficient, the system will ask 

questions to resolve the ambiguity until it is eliminated. 

1.1.2. The use of the newly developed controlled 

processing language (CPL) language for code generation is 

proposed in [10]. CPL receives descriptions in natural 

language and generates an intermediate representation that 

limits the obtained characteristics to a subset of natural 

language and allows for better perception and creation of 

code. In addition, this language uses heuristics to resolve 

ambiguity in descriptions in natural language. 

1.1.3. An end-user programming paradigm in Python is 

proposed in [11]. The Vajra system generates Python code 

fragments from a natural language description. The user 

enters a natural language command at a specific place in the 

source code. The system then generates a list of possible 

operators and associated parameters that are most similar in 

semantics. There are procedures that the user can select to 

resolve ambiguities in the process by choosing from several 

candidate fragments. 

1.1.4. DeepPseudo [12] is a method for generating 

pseudocode in natural language using code feature extraction 

and transformers. It uses the Transformer encoder for 

analysis, extracts local semantic features through a special 

module, and then uses a pseudocode generator to represent 

the algorithm textually. 

1.2. Generation based on UML diagrams 

It is a process of automatic creation of program code from 

unified models presented in the form of diagrams of various 

kinds. 

1.2.1. The application of the type was proposed in [13].  

The GenERTiCA framework generates code for distributed 

real-time embedded systems based on modeling and aspect-

oriented programming. During the design process of the 

system, UML diagrams are developed. The diagrams describe 

architecture and non-functional requirements, such as time 

constraints, fault tolerance, and security. GenERTiCA then 

generates the source code, including parts that are separated 

from the main logic, and integrates them into the code base at 

the compilation stage. 

1.2.2. A similar study [14] specifies that it is necessary to 

use class diagrams for UML modeling and code generation 

based on them. An important point is that associations should 

be implemented as classes when generating code based on 

diagrams. This approach helps to solve problems with 

multiple relationships, aggregation, and associative classes. 

1.2.3. The code generation process includes three main 

phases: input, transformation, and output [15]. In the input 

phase, the system accepts UML diagrams in XMI format. 

These diagrams are processed by XMIParser, which creates 

metamodel instances for each diagram. Then, in the 

transformation phase, CodeGenerator uses these metamodels 

to generate isolated code for each diagram: the structure is 

formed based on the class diagram, the control flow of 

methods is based on sequence diagrams, and object 

manipulations and user interactions are added through the 

actions of activity diagrams. 

1.2.4. Another method for generation of Java code from 

UML diagrams using XMI representation is proposed in [16]. 

The diagrams are modeled in the BOUML tool, exported to 

XMI, from which metadata is extracted, and Java code is 

generated based on them. 

1.2.5. In [17], a framework for generation of programs 

based on a visual model created by the user and on a data flow 

diagram, is described. The framework is a client-server 

application and uses the developed data storage format. The 

conducted studies have shown that the framework is suitable 

for automating complexly structured tasks when developing 

the original model and can be used to speed up data 

processing. 

1.3. Generating code for specific platforms 

It is a process of creating software code optimized for specific 
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hardware or software environments. This approach includes 

emulation of various processor architectures, automatic 

translation of serial code into parallel code. 

1.3.1. In [18], the architecture and operating principles of 

QEMU, a machine emulator using portable dynamic 

translation to emulate multiple processors (x86, PowerPC, 

ARM, Sparc) on various platforms, are proposed. The main 

component of the system is the dynamic code generator 

dyngen, which translates the instructions of the target 

processor into micro-operations represented by fragments of 

C code compiled with GCC. These micro-operations are 

combined into the executable code of the host machine, 

which cached for reuse. 

1.3.2. The framework [19] allows engineers to create 

sensor network components at both the application and 

protocol levels. The framework is based on Simulink, 

Stateflow, and embedded components of Coder. These 

components are building blocks for modeling, simulation, 

and subsequent code generation for various target platforms 

and operating systems. 

1.3.3. The system automatically converts the sequential C 

code into parallel CUDA code [20]. The program is analyzed 

through an abstract syntax tree (AST), iteration space 

polytopes, and data dependencies are extracted. Based on 

them, affine transformations are created, which are used to 

generate operator domains. The final code is formed using a 

polyhedral generator, such as CLooG. 

1.3.4. Generating EMF-compatible code in the Fujaba 

program development system [21] involves two approaches: 

(1) directly generating Java code from Fujaba models or 

(2) creating an Ecore file and then processing it with the EMF 

generator. Structural elements are converted to Ecore 

elements, and behavioral models are generated as separate 

Java code and integrated with the main structure. An example 

is a task management project, where the generator creates an 

Ecore file and Java code, which are combined by the EMF 

generator into a finished program. 

1.4. Generating programs based 

on formal specifications 

These are methods of generating software code based on 

rigorous mathematical descriptions of the requirements and 

behavior of a system. 

1.4.1. The KVEST methodology [22] is focused on 

automated test generation and software verification based on 

formal rules. The key aspect is the use of explicit 

specifications that describes not only specific values, but also 

classes of acceptable values. This approach, combined with a 

model-oriented method and abstract data structures, makes it 

possible to create implementation-independent specifications 

that serve as the basis for subsequent generation of test sets 

as well as test coverage assessment through a modified 

criterion of a perfect disjunctive normal function. 

1.4.2. There is a code generation mechanism: the control 

policy is specified in a high-level programming language and 

then automatically converted into the source code for a 

specific problem [23]. This approach eliminates the need for 

significant time costs and deep knowledge of code 

optimization. The study shows that the use of code generation 

solves a wide range of control problems and achieving 

increased performance compared to traditional general-

purpose solvers. 

1.5. Code generation for distributed systems 

It is a process of generating program designed to run in a 

distributed computing environment. 

1.5.1. In [24], a method for generating code for linear 

program sections is based on the exact joint solution of the 

problems of selecting and scheduling instructions, taking into 

account the restrictions on the number of registers. The 

advantages of the approach are: consideration of parallelism, 

code optimization when there is a shortage of registers, and 

automatic use of instructions with multiple results. The 

proposed algorithm improves the compilation process, 

providing a more optimal distribution of resources and 

increasing processor performance. 

1.5.2. The GCD distributed computing system [25] 

integrates created modules and simplifies the process of 

prototyping complex engineering systems. The software 

toolkit includes a specialized template format, a library of 

functions for their interpretation, and a system of 

initialization files for source data. 

1.6. Using the CASE tools that generate program code 

based on models or specifications 

It is a form of implementation of a template method, which 

automates the process of converting high-level descriptions 

into executable code. Modern CASE tools are based on 

methodologies of structural or object-oriented analysis and 

design, which formalizes the stages of program development 

and minimizing the influence of third-party factors. In such 

methodologies, specifications are used to describe external 

requirements for the system, including text descriptions, use 

case diagrams, class, sequence and activity diagrams [26]. 

There are the studies related to this type of program 

generation: 

1.6.1. Code generation in Isabelle/HOL [27] is based on a 

multi-stage process, where the key element is the introduction 

of an intermediate language, Mini-Haskell. The language is a 

bridge between the source higher-order logic with type 

classes and the target functional programming languages. The 

semantics of both the source language and Mini-Haskell are 

specified in terms of higher-order rewriting systems, which 

provides the basis for proving the correctness of the 

translation. This allows functions and data to be replaced by 

more efficient analogues within a single process. 

1.6.2. Modeling systems by an analyst together with a 

subject area expert is proposed in [28]. During the ongoing 

dialogue “author-reader”, the model diagrams are 

constructed, verified, and corrected. The developed structure 

is supplemented with a quantitative assessment as well. For 

this purpose, the AllFusion Business Process Modeler 

package uses cost indicators of work, the so-called ABC 

analysis and user properties of user defined properties 

processes. The presented approaches allow for the program 

generation. 

1.6.3. In the method [29], user enters the data of the entity 

structure and its attributes. The data are written to a unified 

storage (relational database) containing information about the 

template structure. After saving the data, to ensure reliability 

and scalability, another process reads the data, analyzes it, 

and then generates code. 

In parallel with the template methods, another type of 
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program generation was developed that required 

consideration. 

2. Code generation based on models 

This type is a methodology for converting high-level software 

specifications into executable code by using formal models 

and transformation algorithms. This approach covers various 

methods, including code generation based on state diagrams, 

where automata transition graphs are the basis for creating 

programs with explicitly allocated states, and generation 

based on class diagrams, which forms the structure of object-

oriented code. Particular attention is paid to creating code for 

real-time systems, where synchronous data flows and finite 

automata models are translated into code analyzed relative to 

the worst case of execution. Modern research is aimed at 

improving transformation algorithms and optimizing both the 

size of the generated code and the efficiency of the generation 

process itself. Let us consider the instances of the type. 

2.1. A polyhedral model for code generation formalizes 

data and computation dependencies that simplifies program 

optimization, especially in the context of parallel computing 

[30]. Code generation includes automatic partitioning of 

computations, task redistribution, and optimization of 

execution order, which improves performance with 

multitasking and multi-core systems. 

2.2. A method for generating code with a polyhedral model 

is a process of converting multidimensional representations 

of program cycles back into executable code, including the 

stages of design and separation of domains [31]. In this case, 

to improve scalability, methods for removing scalar 

dimensions and the use of domain iterators are used, which 

processes complex transformations and large programs with 

many operators. 

2.3. The Ptolemy platform [32] transformes of models into 

executable code for embedded Java systems. These models 

are specified in advance and describe the behavior of the 

system and its interaction with external resources. 

2.4. The method of generating a modeling program uses 

the translation of a control machine, specified in the form of 

a table or graph, into a production algorithm [33]. The 

production algorithm is presented in a text file, which is fed 

to the input of the generating program. The output is a 

program that models the specified machine. 

2.5. Software can be developed based on a multi-level set 

of rules for generating software source code [34]. Metagraphs 

are chosen as the presentation structure. A model for 

generating software source code is presented, as well as a 

design methodology using a generation system based on a 

multi-level set of rules. The problem of developing automated 

tests within the framework of the proposed approach is 

considered. 

2.6. The process of developing tests designed to check the 

coherence of memory accesses can be performed in the 

Elbrus assembly language [35]. The approach generates 

impacts for a test system that combines the RTL model of the 

processor with the software model of the memory subsystem. 

The test generator automatically creates sequences of 

operations that model various situations, including possible 

errors and coherence violations, which identifies problems at 

early stages of development. 

2.7. The code2seq model [36] generates sequences of 

program code tokens based on its structural representation in 

the form of AST paths. The approach is based on the use of 

an architecture that uses neural networks with an attention 

mechanism, allowing the model to focus on the most 

informative AST fragments when predicting the output 

sequence. This approach outperforms previous models 

specifically designed for programming languages, as well as 

neural machine translation models. 

2.8. ReCode [37] is a method based on extracting a subtree 

with links to existing code examples in a neural code 

generation model. Sentences that are similar to the input ones 

are extracted using a sentence similarity scoring method 

based on dynamic programming. Then, 𝑛-grams of action 

sequences that produce a related AST are extracted. As a 

result, the probability of actions that will cause the resulting 

𝑛-gram action subtree to be in the predicted code is increased. 

2.9. The problem of generation of commit messages is 

important for understanding code changes in frequent 

software updates. The authors of the study [38] propose a new 

model called ATOM, that uses AST to represent the structure 

of changed code, which helps to better account for its 

semantics. The model integrates both extracted and generated 

messages through a hybrid ranking module that selects the 

most appropriate message for a particular code change. 

2.10. A tool for creating directed graphs based on a 

deterministic finite automaton simplifies the writing of 

program code [39]. In it, the program structure is presented 

as an automaton, where the states are different stages of the 

algorithm execution, and the transitions are determined by 

control structures. The transformation of such a 

representation into code is carried out taking into account 

predefined rules and templates. 

With the use of the two code generation technologies 

discussed, it became clear that it was necessary to improve 

the process using previously developed algorithms. 

3. Generating programs based on search and evolutionary 

algorithms 

This type methods treat the creation of program code as an 

optimization problem or as a search for a solution in a space 

of possible options. These approaches are based on the 

principles of simulating natural evolution, where programs 

are formed by successively applying mutation and selection 

operations to achieve the desired behavior. One of the early 

examples is the use of genetic algorithms to create ROP 

chains, where the process begins with analyzing the 

executable file, identifying potentially useful code fragments, 

parameterizing them, and further optimizing them through 

mutations and fitness assessment. Another direction is the use 

of evolutionary algorithms to solve logical problems, where 

state generators form sets of solutions that are subject to 

iterative optimization. Particular attention is paid to the use 

of semantic information and modern machine learning (ML) 

methods to improve the quality of generation. Let us consider 

current studies of this type: 

3.1. The Spi2Java tool [40] generates Java code 

implementing the cryptographic protocols described in the 

formal specification of the spi calculus language. Spi2Java is 

part of the Spi calculus toolkit, which also includes a 

preprocessor, a parser, and a security analyzer. The latter 

analyzes protocols and identifies their weaknesses. Once a 
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protocol has been analyzed and sufficient confidence in its 

correctness has been achieved, Spi2Java creates an 

implementation of it in Java, thereby reducing the risk of 

introducing vulnerabilities at the programming stage. 

3.2. Code generation for solving convex optimization 

problems is possible using the CVXGEN tool [41]. Based on 

a high-level description of such problems, CVXGEN creates 

specialized C code that is compiled into a solver. The focus 

is on problems that can be transformed using convex 

programming techniques into small-size convex quadratic 

programs. 

3.3. The ROPER tool [42] uses genetic algorithms to create 

ROP chains for the ARM architecture. First, parts of the 

program are found in the executable file, their parameters are 

calculated, and then the file is loaded into a virtual machine 

to test the chains. Genetic mutations change the addresses of 

program parts and data on the stack, and fitness is estimated 

by the difference between the current and target register 

values. 

3.4. Programs in the Prolog language are generated 

through a declarative description of state generators that form 

the solution search space [43]. The approach uses of bit 

chains to represent the states of objects and bitwise operations 

to generate new states, while the process of constructing a 

solution itself is implemented through recursive 

computational procedures without the need to store the full 

state graph in memory. Generators can either save the history 

of previous states for step-by-step construction of a solution, 

or work without it, relying only on the current state. 

3.5. In [44], hash functions are used for obfuscating 

program code are considered. Taking into account the 

features, a method of program generation is proposed, based 

on the genetic programming approach using the fitness 

function and an algorithm that is repeated a certain number of 

times, depending on the input data. Generation is carried out 

by combining bit and arithmetic operations, as well as 

pseudo-random permutations, which ensures high entropy 

and resistance to reverse analysis. 

3.6. A genetic algorithm for code generation can be used to 

solve the problem of finding the minimum of a function of 

two variables without using derivatives [45]. The results 

obtained showed that the approach was able to write a 

program that solves a computational problem, and also, if 

necessary, improve a human-written algorithm. 

With the development of program code and the creation of 

specialized online platforms for its storage and exchange, a 

method of generating programs based on the principles of 

compositional programming emerged. 

4. Compositional programming 

This type is a software development methodology based on 

the principle of forming predefined components or modules 

to create complex software systems. The approach is 

characterized by a high degree of modularity and code reuse, 

which is especially important in the context of modern 

development methods such as microservice architecture and 

distributed systems. 

4.1. The SPIRAL project [46] generates code tailored to a 

specific architecture by formulating the tuning problem as an 

optimization problem using the mathematical structure of 

DSP algorithms and a feedback mechanism. The system can 

generate code for transforms such as the discrete Fourier 

transform and wavelet transform, as confirmed by 

experiments. 

4.2. KLEE [47] is a symbolic execution tool that can 

generate tests with high coverage. KLEE operates on the 

basis of symbolic code execution, where input data is 

represented as symbolic values rather than specific numbers, 

which explores many possible program execution paths. The 

system uses a constraint solver to generate specific test cases 

that reproduce detected errors in the source code. 

4.3. To improve the quality of C language compilers, the 

Csmith tool was created to generate random test scenarios to 

detect errors in compilers using differential testing [48]. The 

language generates programs with no undefined behavior due 

to control over the language constructs used and their 

combinations. The resulting programs comply with the C99 

standard at both static and dynamic levels. 

4.4 The Julia programming language [49] is designed for 

technical computing with a focus on high performance and 

dynamic typing. It provides tools for compile-time code 

generation using functions. This allows users to write 

optimized code and extend the output type system. 

4.5. In [50] it is shown that currently there are no universal 

integrated development environments with semantic editing 

of program code. The creation of such environments can 

significantly increase the productivity of the programmer, 

due to semantic editing and the function of the version control 

system, tracking not textual changes, but changes in the 

abstract model of the program code. 

4.6. The C code could be generated from a parametric 

description of a quadratic program (QP) as input [51]. The 

resulting code is compiled into an optimization solver for QP 

that can run on embedded platforms. In addition, this code is 

based on operator splitting quadratic program (OSQP). It is a 

new open source solver for quadratic programming. The 

generated C code is library-free and minimal in size. 

4.7. In [52], a system for generation of parallel code from 

fragments of the C programs using the OpenMP polyhedral 

optimization model is presented. It improves parallelism and 

code accuracy through integer linear programming to find 

suitable affine transformations. 

4.8. Generation of monitoring programs for technical 

objects is presented in [53]. The proposed structure consists 

of several subsystems: data integration, information 

acquisition and processing, generation of models of observed 

objects and data collection processes. The structure uses the 

inductive-deductive approach to constructing models of 

objects based on the data received from them. Interaction is 

carried out with 𝑛-dimensional vectors of numerical values 

characterizing the states of the elements of objects at certain 

points in time. In this case, the drivers perform preliminary 

aggregation and normalization of data before transmitting 

them to the system. 

4.9. In [54], the following set of operations are used for 

code generation in loops: optimization of sequential 

transitions, calculation of the number of loop repetitions 

before the loop body, use of a delay slot, induced variables, 

and removal of unnecessary inductive variables. 

4.10. REDCODER is an extraction framework that obtains 

code or summary data from a database and provides it as an 
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adjunct to code generation or summarization models [55]. 

REDCODER has a couple of unique features: (1) it extends 

the capabilities of modern data mining to find relevant code 

and (2) it can work with databases that include unimodal 

(code or natural language description only) or bimodal 

instances (code-description pairs). 

The creation of ML and AI technologies has led to the 

development of new methods for generating programs based 

on these technologies. Many articles are currently devoted to 

this method. 

5. Methods based on artificial intelligence and machine 

learning 

They are a modern approach to program generation based on 

the use of natural language processing (NLP) algorithms, 

neural networks, and LLM for the automatic creation of 

program code. This approach has been actively developed 

since 2012 and demonstrates significant potential in the tasks 

of converting descriptions in natural language into executable 

code, as well as in the tasks of optimizing and improving 

existing programs. Let's consider the categories of research 

devoted to this topic. 

5.1. Neural network architectures 

Code generation uses neural networks and NLP technologies 

to transform text descriptions into executable code. 

5.1.1. AlphaCode is a code generation system that solved 

54.3% of the problems in the latest programming competition 

on the Codeforces platform [56]. AlphaCode solves problems 

by generating millions of diverse programs using specially 

trained transformer networks, and then filtering and 

clustering these programs into a maximum of 10 

representations. This is the first time that an AI system has 

shown competitive results in a programming competition. 

5.1.2. The method of generating input data for fuzzy 

testing of JavaScript interpreters improves the quality and 

speed of fuzzy testing [57]. The data is generated using neural 

networks and compilation with subsequent fragmentation of 

AST and aggregation of fragments. Using the method, it was 

possible to form a new set of input data. The method of 

generating semantically correct code for fuzzy testing 

provides coverage of 44.4% by lines of code and 51.2% by 

functions. 

5.1.3. The CODEnn neural network is trained to find 

semantic similarities between a natural language description 

and a code fragment [58]. The study is based on the 

representation of the program in the form of vector spaces, 

which matches queries with code fragments, taking into 

account their semantic features. When the code fragment and 

the description are semantically similar, the embedded 

vectors will be close to each other. 

5.1.4. The methodology for automating the creation of 

control programs for the CNC machines is considered in [59], 

where the key aspect is the use of intelligent systems, in 

particular neural networks, to solve the problem of generating 

and verifying control programs. At the same time, the need to 

use ML to analyze various processing parameters, such as 

tool types, cutting modes and motion paths, is emphasized, 

which increases the efficiency and safety of the mechanical 

processing action. 

5.1.5. The Prophet system generates code fixes (patches) 

by training on a set of successful patches written by 

programmers and obtained from open source repositories 

[60]. Prophet uses a parameterized probabilistic model to 

assign a correctness probability to each candidate patch in the 

search space, based on universal characteristics of correct 

code that are identified and learned through statistical 

analysis. 

5.1.6. A method analyzes natural language descriptions to 

generate Python code fragments [61]. The simulated neural 

architecture uses a probabilistic grammar model to explicitly 

capture the syntax of a programming language as a priori 

knowledge. This approach was also found to be effective in 

generating complex, multi-layered programs. 

5.2. Large language models 

They generate code using scalable transformer-based 

architectures trained on huge amounts of text data and 

program code. 

5.2.1. Methods for generating malicious software code 

using several LLM are proposed in [62]. Compromise 

identifiers can be recognized from the generated code parts. 

It is shown that the code created using LLM has certain 

characteristics that can be detected by antiviruses. 

5.2.2. CodeBERT is a bimodal pre-trained model for the 

PL programming language and the NL language [63]. The 

model uses a neural architecture based on Transformer and is 

updated using a hybrid objective function that includes a pre-

training task to detect replaced tokens, which consists of 

identifying plausible alternatives sampled from generators. 

CodeBERT searches natural language code and generates 

code documentation. 

5.2.3. Evaluation of LLM for Python program synthesis in 

MBPP and MathQA-Python benchmarks is considered in 

[64]. The results show that the performance grows 

logarithmically with increasing model size. The largest model 

without additional training solves 59.6% of MBPP problems, 

and additional training increases the accuracy by 10%. On 

MathQA-Python, the accuracy reaches 83.8%. Human 

interaction, including feedback, reduces errors by half. The 

analysis revealed difficulties with generating complex 

programs and limited ability of models to predict execution 

results. 

5.2.4. Code Llama is a family of LLM based on Llama 2, 

designed for programming tasks [65]. All models are trained 

on sequences up to 16,000 tokens long and show improved 

results when processing inputs up to 100,000 tokens. The 7B, 

13B, and 70B variants of the models support the feature of 

filling in the surrounding content. In the HumanEval and 

MBPP tests, Code Llama achieves accuracy of up to 67% and 

65% respectively, outperforming other available models. 

5.2.5. Using ChatGPT for code generation [66] has a high 

degree of non-determinism under the default setting: the 

proportion of coding tasks with zero equal test yield across 

different queries is 75.8%, 51.0%, and 47.6% for three 

different code generation datasets: CodeContests, APPS, and 

HumanEval, respectively. 

5.2.6. In [67], the problem of software synthesis is 

considered as a task of creating a program based on 

specifications, through input-output examples or natural 

language, using LLM for code generation. A family of 

models CODEGEN trained on natural and programming 

language data is presented. A multi-stage approach to 
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software synthesis is also investigated through the creation of 

an open benchmark MTPB, which showed an improvement 

in synthesis when using multi-turn hints compared to a single-

stage method. 

V. FURTHER DISCUSSIONS 

The study of current methods of generating program code 

demonstrates several main vectors of its development. The 

issue of improving the quality of created programs is most 

actively considered. At the same time, special attention is 

paid to the last stages of the development of generation 

systems, in particular, to the tasks of calculating the 

compliance of the generated code with the original 

requirements. However, the initial stage of forming a 

candidate database remains insufficiently studied, despite its 

importance for the entire process. 

There is a tendency to consider individual stages of the 

generation algorithm as independent components. This 

requires a revision of approaches to the design of code 

generation algorithms. 

Modern research is moving away from traditional 

template-based methods to technologies using AI and ML. 

LLM show potential in tasks of converting natural language 

descriptions into executable code and optimizing existing 

programs. However, traditional methods such as 

compositional programming and the use of CASE tools 

continue to evolve and find application in various subject 

areas. 

The integration of various code generation methods could 

significantly improve software development results. A 

promising direction is also the creation of reference data sets 

for the unification of evaluation methods and the 

development of research in the field of generation of program 

code. 

VI. TYPE SUMMARY 

We present the summary of program generation methods as a 

scheme (see fig.). 

The scheme reflects the considered directions of 

development of program generation methods. Each block of 

the scheme corresponds to the type of program generation. 

VII. APPLICATION IN OUR STUDY 

Key aspects useful for the developed method of generating 

programs for array transformation based on the depth-first 

search (DFS) algorithm include: template approaches for 

parameterization of array transformation operations, 

evolutionary algorithms as a source of ideas for search 

strategies, and work with state graphs, where DFS provides 

enumeration of transformation paths. 

 
Types and subtypes of program generation methods 

The review revealed gaps in the systematization of the 

initial stages of generation, which the method fills by 

modeling the state space of the array as a graph, where nodes 

are intermediate states, and edges are admissible operations. 

Thus, the review confirms the relevance of the combination 

of DFS with templates and the identification of areas for 

improving the method for generating array processing 

programs. 
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VIII. CONCLUSIONS 

Program generation is a dynamically developing field that 

actively uses template approaches, artificial intelligence, 

evolutionary algorithms, and compositional methods. Further 

research focuses on the integration of these methods, which 

can significantly improve the efficiency of software 

development. 

An analysis of existing approaches shows that each 

program generation method has its own specifics and areas of 

appropriate application. Traditional template methods and 

CASE tools remain in demand for solving well-formalized 

problems, while modern technologies based on LLM open up 

new possibilities in software development automation. 

Further development of the field of program code 

generation will be largely determined by progress in the field 

of AI and NLP. At the same time, the need for a systematic 

approach to the design of generation algorithms, taking into 

account the interrelationship of all stages of the process of 

creating program code, remains important. 

This paper presents a review of modern methods of 

software code generation, demonstrating the important role 

of AI and ML technologies in the development of this field. 

Compared with existing reviews, this paper classifies code 

generation methods more clearly, covering both traditional 

template approaches and the latest advances in neural 

network technologies over the past decade. Particular 

attention is paid to the relationship between the various stages 

of the code generation process and their impact on the final 

result. The review should become a valuable reference not 

only for researchers seeking to develop code generation 

technologies, but also for practicing programmers wishing to 

choose the most appropriate tools and approaches for their 

projects. 
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