
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

125

Abstract — Cross-Site Scripting (XSS) is still a big security

threat to web and user data. We need advanced detection

mechanisms to protect web applications. This paper presents a

new machine learning framework for XSS detection. We use

hierarchical feature selection with Spearman correlation to

reduce feature dimension and improve model interpretability,

and CatBoostClassifier, a gradient boosting algorithm known

for its robustness and performance. We tested our CatBoost-

based model on a large dataset, and it achieved 99.88%

accuracy, 1.00 ROC AUC, 1.00 Average Precision, and 0.9974

Matthews Correlation Coefficient. Compared to existing XSS

detection methods, our proposed framework outperforms the

benchmark models on all metrics. Feature importance and

SHAP value analysis also show the important features for XSS

classification. This paper proves our integrated approach is

effective and a good solution for XSS mitigation in web

applications.

Keywords— Cross-Site Scripting, Machine Learning,

Feature Selection, Web Security.

I. INTRODUCTION

In the ever-changing landscape of cyber threats, Cross-Site

Scripting (XSS) remains a big challenge to web security [1].

These attacks exploit weaknesses in web applications, inject

malicious scripts, and put data integrity and users’ safety at

global risk [2]. The complexity of those attacks ranges from

simple scripting exploits to complex, obfuscated injection

that evades traditional detection mechanisms [3]. So, we

need detection strategies that are both versatile and precise.

Hence, we are seeing an increasing reliance on advanced

Machine Learning (ML) to mitigate these threats [4]. Web

application vulnerabilities are part of cyber threats and

affect businesses, governments, and organizations. Despite

the widespread deployment of Web Application Firewalls

(WAF), these are not foolproof, often because developers

are overlooking vulnerabilities at the coding stage—a

reflection of inadequate security protocols [2]. Recently, we

have seen many incidents where such vulnerabilities were

exploited, resulting in high-profile attacks on major social

media like Weibo and Twitter, where attackers got many

user’s identity tokens through XSS vulnerabilities [5–6].

These incidents show how common XSS attacks are and

how fast they can propagate across systems, making the

security landscape more complex. Although WAF can

Manuscript received March 24, 2025.

Abdulkader Hajjouz is with the National Research University ITMO,

Saint Petersburg, 191002 Russia (phone: +79693483331; e-mail:
hajjouz@itmo.ru).

Elena Avksentieva is with the National Research University ITMO,

Saint Petersburg, 191002 Russia (e-mail: eavksenteva@itmo.ru).

intercept some network attacks, more than relying on WAF

technology for web application security is required. Insights

from HackerOne, a leading hacker platform, showed that

XSS vulnerabilities were the most reported issue until 2021,

around 23% of all vulnerabilities [7]. Also, according to

Acunetix’s 2021 security report, XSS is in the top 3 high-

severity threats, with a 0.5% increase from last year [8].

This proves that XSS is still a big risk to web security, and

we need to continue researching in this area. Our research

contributes to this by improving XSS detection using

machine learning models that balance simplicity and

accuracy. To illustrate the different approaches in XSS

detection, previous research has tried various methods. For

example, authors in [9] used Deep Learning techniques,

word2vec, and LSTM. Authors in [10] used a crawler-based

approach, combining web crawling with injection testing.

Authors in [11] used Machine Learning and Statistical

methods: LSTM, CNN, AdaBoost, SVM, and Random

Forest. Authors in [12–13] used Machine Learning

algorithms: SVM, k-NN, and Random Forest, along with

Neural Networks and Explainable AI (XAI). Authors in [14]

showed the effectiveness of Decision Trees in Machine

Learning. Authors in [16] combined different approaches:

Random Forest, Logistic Regression, and k-NN with CSP,

IDS, IPS, and WAF. These different results show that

machine learning can be used to improve XSS detection.

II. METHOLOGY

A. Attack Scenarios

XSS detection requires an understanding of all the different

attack scenarios, which vary greatly in complexity,

exploitability, and impact [2,16–17]. These scenarios

include reflected XSS, where malicious scripts execute

directly from a URL and pose an immediate threat [18];

stored XSS, where injected scripts persist in a website’s

database, activate when accessed, and require advanced

detection methods because of their latent nature [19]; and

DOM-based XSS, which involves real-time manipulation of

the client-side DOM without server interaction and can

evade traditional security controls [20].

B. Overview Of The Dataset

Our study uses a large dataset, mainly from [12] and

augmented with CSIC 2010 data [21], which consists of

43,218 files (28,068 benign, 9,068 plaintext from [23], and

15,150 malicious). This dataset has 65 features (HTML tags,

JavaScript events, and metadata for XSS exploits) and is

necessary to train XSS detection models that can distinguish

between good and bad content. To test thoroughly, the data

was divided into non-overlapping training (19,122 instances:

5,150 malicious, 13,972 benign), validation (12,048

instances: 5,000 malicious, 7,048 benign), and testing

(12,048 instances: 5,000 malicious, 7,048 benign) sets. This

dataset reflects the complexities of real-world scripting and

Highly Accurate XSS Detection using CatBoost

Abdulkader Hajjouz, Elena Avksentieva

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

126

XSS attacks [8, 23–24] and is necessary to train a model that

can work with different XSS scenarios and be resilient to

emerging threats.

C. Stratified Sampling And Class Balancing

To train and evaluate our models robustly, we used stratified

sampling to split our dataset into training, validation, and

test sets, each with the same class distribution as the

original. Since we knew the class imbalance, especially in

the training set, which had 13,972 benign and 5,150

malicious samples, we used the Synthetic Minority Over-

sampling Technique for Nominal and Continuous

(SMOTENC) to generate synthetic samples for the minority

(malicious) class. This balanced the training set to 13,972

benign and 13,972 malicious samples, the validation set to

7,048 benign and 5,000 malicious samples, and the test set

remained the same as the original. As recommended in [25],

this is important to prevent model bias and to achieve fair

and accurate intrusion detection by ensuring both training

and testing phases reflect the diversity of the dataset.

D. Hierarchical Feature Selection Using Spearman

Correlation

To tackle the problems of high dimensionality and potential

multicollinearity in our initial 65 features, we used a

rigorous Hierarchical Feature Selection methodology based

on Spearman’s rank correlation coefficient. This method

offers a statistical way to identify and manage feature

redundancy by quantifying the monotonic relationship

between feature rankings, so it captures non-linear

relationships that linear correlation won't. The initial step

was to compute the Spearman correlation matrix for all

feature pairs in our dataset. This matrix contains the degree

and direction of the monotonic relationship between each

pair of variables. Then, we conducted Agglomerative

Hierarchical Clustering, utilizing the Spearman correlation

coefficients (converted into a dissimilarity measure), to

group features that have strong statistical similarity. The

resulting hierarchical structure is visualized through a

dendrogram, which shows the inter-feature relationships

based on their rank-order correlations. This hierarchical

structure allows us to identify clusters of features where the

underlying variability is almost shared. The critical step in

this process is to select one feature from each cluster. The

selection criterion is to preserve as much information and

variance as possible from the whole cluster while reducing

the dimensionality of the feature space as much as possible.

By focusing the subsequent modeling on a more sparse and

independent set of features, this hierarchical selection

methodology, based on Spearman correlation, is designed to

speed up our machine learning models so they converge

faster during training and are faster during inference. Also,

the dimensionality reduction can help with generalization by

reducing the risk of overfitting to redundant or less

informative features, so our XSS detection system will be

more robust and accurate.

Figure 1 shows the feature correlation before and after our

feature selection. The top heatmap is the Spearman

correlation matrix for the initial 65 features. Red is positive

correlation and blue is negative correlation, which means

potential redundancy. After removing highly correlated

features through our hierarchical approach, the bottom

heatmap is the correlation matrix for the 46 features. Figure

1 demonstrates that the color-coded cells show a significant

reduction in strong correlations (red and blue are less intense

and more white areas), which means we successfully

reduced the feature redundancy. The heatmap is showing the

Spearman correlation coefficients among the remaining

features, which means they are independent. This reduction

in correlations means we streamlined our model and we

have a more efficient and robust final feature set to detect

XSS vulnerabilities accurately and reliably without

sacrificing the predictive power.

Figure 1: Correlation Heatmaps Before and After Feature

Selection. (Top): Initial feature set correlation. (Bottom):

Correlation after hierarchical feature selection. Spearman

correlation coefficients are visualized with a red-white-blue

color scale.

E. Understanding CatBoost and Grid Search

Optimization for Enhanced XSS Detection

CatBoost, a gradient boosting framework over decision

trees, is great with complex tabular data and multi-class

classification, so it’s perfect for high-accuracy tasks like

attack detection, especially with imbalanced datasets [26].

Its Ordered Boosting mechanism prevents overfitting and

prediction bias by training trees on ordered data, and

Ordered Statistics allows to handle categorical features

without one-hot encoding. For multi-class problems,

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

127

CatBoost minimizes the Cross-Entropy loss function, which

measures the difference between predictions and actual

values, and iteratively refines the model. The Softmax

function converts these predictions into probabilities so that

they sum up to one, and the highest probability is the final

class. CatBoost performance is very dependent on

hyperparameters: number of iterations (trees), learning rate,

tree depth, L2 leaf regularization, min data in leaf, random

strength, grow policy (e.g., SymmetricTree, Depthwise,

Lossguide), overfitting detection parameters (od_type,

od_wait), and bootstrap techniques (Bernoulli with

subsample rates 0.66 and 0.8, Bayesian). To tune these

parameters, we used grid search strategy; we carefully

explored a predefined hyperparameter space [27]. We

trained and evaluated CatBoostClassifier on GPU for

computational efficiency for different combinations of these

parameters: limited number of iterations (500) to prevent

overfitting, learning rates 0.13 and 0.1 for controlled

convergence, depth 3 for simplicity, L2 regularization 1 and

3 for generalization, min data in leaf 1 and 5 for robust node

support, random strength 1–10 for learning diversity, and

different grow policies to fine-tune tree expansion.

III. RESULTS

To see how our CatBoostClassifier model did with Cross-

Site Scripting (XSS), we looked at the confusion matrix in

Figure 2. The confusion matrix shows the model predictions

against the actual labels of the test dataset, with 4 main

metrics: True Positives (TP), True Negatives (TN), False

Positives (FP), False Negatives (FN). In our case, True

Negatives are the benign samples (no XSS attack) and True

Positives are the malicious samples (XSS attacks). False

Positives are benign samples classified as malicious (Type I

error), and False Negatives are malicious samples classified

as benign (Type II error).

Figure 2: Confusion Matrix of the CatBoostClassifier

Model on the Test Set.

In Figure 2, we see the confusion matrix for the

CatBoostClassifier on the test set: 7041 TN (labeled benign

as benign), 7 FP (labeled benign as malicious), 8 FN

(labeled malicious as benign), 4992 TP (labeled malicious as

malicious). This gives us an initial view of how the model is

doing; it looks like a lot of correct classification for both

benign and malicious samples and not many false.

Figure 3 shows training and validation loss curves for

CatBoostClassifier training. As we can see, both training

loss (blue) and validation loss (orange) go down and

converge to a low value with number of iterations. This is a

good sign that the model learns from data and generalizes

well to unseen data (validation loss is similar to training

loss). And validation loss follows training loss closely,

which means the model is not overfitting.

Figure 3: CatBoost Training and Validation Loss Over

Iterations.

To measure how well our CatBoostClassifier model

worked, we calculated key metrics from the confusion

matrix, looking at both class-specific and overall

performance. For benign samples (Class 0), the model had a

precision of 99.89%; this means 99.89% of the samples it

classified as benign were actually benign, and we minimized

false alarms. The recall for benign samples was 99.90%; the

model is very good at finding almost all the actual benign

traffic. The F1-score for Class 0 was 99.89%; this means the

model is robust in classifying benign traffic, and we had

7048 actual benign samples in the test set. For malicious

samples (Class 1), which are XSS attacks, the precision was

99.86%; this is important to minimize false positives and

security alerts. The recall for malicious samples was

99.84%; the model is good at finding almost all the real XSS

threats, which is very important for security. The F1-score

for Class 1 was 99.85%; this means a good balance between

precision and recall in malicious sample detection, and we

had 5000 actual malicious samples. Overall, the model had

an accuracy of 99.88%; this means 99.88% of all the

samples in the test set were correctly classified. These very

high numbers for precision, recall, and F1-score for both

classes and overall accuracy mean the CatBoostClassifier

model is very good at detecting XSS vulnerabilities.

To evaluate our CatBoostClassifier more thoroughly, we

looked at the Receiver Operating Characteristic (ROC)

curve and the Precision-Recall (PR) curve in Figure 4 and

Figure 5, respectively. These curves show how the model

performs at different threshold settings.

Figure 4 displays the overall ROC curve for our

CatBoostClassifier. The ROC curve compares the True

Positive Rate (Sensitivity) against the False Positive Rate (1

- Specificity) at different categorisation thresholds. The

Area Under the ROC Curve (AUC) is a single statistic that

represents the performance of the classifier across all

thresholds. An AUC of 1.0 represents a perfect classifier.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

128

Figure 4: Overall ROC Curve for CatBoostClassifier.

As shown in Figure 4, our model gets a Macro-average

ROC AUC of 1.0000. This means the CatBoostClassifier is

perfect at separating benign and malicious samples. A

perfect AUC of 1.0 means the model can perfectly separate

the positive and negative classes (malicious and benign in

our case), with no overlapping in the distributions of their

predicted scores. In XSS detection terms, this means the

model can get perfect balance between detecting actual XSS

attacks (high True Positive Rate) and low false alarms (low

False Positive Rate) at all thresholds.

Figure 5 shows the Precision-Recall curve for our multi-

class classification problem for Class 0 (Benign) and Class 1

(Malicious). The curve plots Precision against Recall at

different thresholds. The Average Precision (AP) is the

weighted mean of precisions at each threshold, with the

increase in recall from the previous threshold as the weight.

Higher AP means better; 1.0 is the maximum AP.

Figure 5: Precision-Recall Curve for CatBoostClassifier.

As shown in Figure 5, our CatBoostClassifier has an

Average Precision (AP) of 1.0000 for both Class 0 (Benign)

and Class 1 (Malicious). These perfect AP scores are

amazing. An AP of 1.0 for both classes means the model is

perfect at all thresholds. For XSS detection, this means that

the model can have both high precision (minimise false

positives) and high recall (minimise false negatives)

simultaneously. This is critical for a security system since

we need to detect as many real threats as possible (high

recall) while minimising the number of false alarms that can

disrupt security operations (high precision).

The perfect ROC AUC of 1.0000 and perfect Average

Precision scores of 1.0000 for both classes, as seen in the

ROC and Precision-Recall curves, is visual proof of the

excellent performance of our CatBoostClassifier. These

results confirm the findings from the confusion matrix and

numerical metrics, we can see our model is very good at

detecting XSS with perfect balance of precision and recall.

The visual from these curves combined with the numbers is

strong evidence of our proposed method for XSS detection.

To prove the strength and stability of our

CatBoostClassifier model, we ran an analysis using the

Matthews Correlation Coefficient (MCC), which is a

balanced metric for binary classification. Our MCC values

are very high: Class 0 (benign samples) and Class 1

(malicious samples/XSS attacks) both are 0.9974, overall

MCC is 0.9974. These near-perfect MCC values mean the

predicted and actual classifications are almost perfect for

both benign and malicious traffic. The model is very good at

minimizing errors for both classes. This is also backed up by

our previous findings from the confusion matrix,

quantitative metrics, and curve analysis; this is another

evidence that our proposed CatBoost-based methodology is

working well for XSS vulnerability detection.

We did a feature importance analysis to see what’s inside

our CatBoostClassifier and which features are most

important in detecting XSS. CatBoost has a built-in way to

calculate feature importances based on how much each

feature contributes to the model’s decision. Figure 6 shows

the top features as per the CatBoostClassifier model. The

importance is quantified as a percentage, and the features

are ranked in descending order so we can easily see which

features are most important in XSS detection.

The feature importance is shown in Figure 6. As we can

see, there is a clear hierarchy of features for Cross-Site

Scripting (XSS) detection. The top feature, "Contains Less

Than," which means the presence of '<', is a strong indicator

of XSS attacks, followed by "Contains Question Mark,"

"ScriptTag," "Contains Comma," and "Numbers Ratio" in

descending order. "Contains Less Than" and "ScriptTag" are

the HTML and JavaScript injection, which are the basis of

most XSS attacks. "Contains Question Mark" is the URL

query parameter reflected XSS. "Contains Comma,"

"Numbers Ratio," "Contains And," "Contains Slash,"

"Contains Semicolon," "Contains Quotations," and

"Contains Percentage" are capturing the syntactic and

structural patterns of malicious scripts or encoded payloads.

This hierarchy gives us an idea of how the model is working

and what are the input characteristics that are indicative of

XSS vulnerabilities and what patterns the model is able to

detect from common XSS attack vectors. So, these findings

have practical implications for feature engineering and

where to focus the security efforts towards the most

important indicators of malicious activity.

To see how our CatBoostClassifier decides and what

features contribute to classifying samples as Class 0

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

129

(benign) or Class 1 (malicious), we did a SHAP (SHapley

Additive exPlanations) value analysis. SHAP values provide

a unified measure of feature importance, quantifying the

marginal contribution of each feature to the model’s output

for individual predictions.

Figure 7 shows the SHAP values for features that affect

benign samples (Class 0). Features are sorted by importance,

the x-axis is SHAP value (impact on output), points are

colored by feature value (red = high, blue = low).

Figure 8 shows the SHAP values for features that affect

malicious samples (Class 1, XSS attacks). Same as Figure 7,

features are sorted by importance, points are colored by

feature value.

For Class 0 (Benign Samples) (Figure 7), the SHAP

analysis shows that features like "Contains Less Than,"

"Contains Question Mark," and "Contains Comma" are

important. For "Contains Less Than" and "Contains

Question Mark," the higher feature values (red points) have

negative SHAP values (to the left of the vertical center line).

So, when these features are more present, they tend to

decrease the chances of the sample being classified as

benign, which might seem counterintuitive at first. But it

could be because, while these characters are common in

benign text, their absence is even more characteristic of

benign content in this dataset. Features like "ScriptTag" and

"Contains JS" also seem to have an impact, with varying

SHAP values depending on their presence.

For Class 1 (Malicious Samples - XSS Attacks) (Figure 8),

the SHAP plot is different. Features like "Contains Broken

Bar", "Letters Ratio", and "Numbers Ratio" are among the

most important. In this plot, the direction of feature impact

is not clear from this snippet, but a full SHAP plot would

show how high or low values of these features affect the

prediction towards the malicious class. Note that features

that are important for Class 1 might not be the opposite of

those for Class 0, because distinguishing malicious from

benign content is complex, and the model learns nuanced

patterns.

The SHAP value analysis gives us a fine-grain view of

feature contributions. SHAP plots show how each feature

affects the prediction for individual samples and for each

class. The fact that features like “Contains Less Than” and

“Contains Question Mark” have a negative SHAP value for

benign class prediction means it’s a complex relationship.

It’s possible that for benign samples in this dataset, the

absence or lower frequency of these characters is more

indicative of benign content than their presence. For

malicious samples, the presence of different sets of features,

perhaps related to encoding or obfuscation techniques (as

“Contains Broken Bar,” if it refers to special characters used

in encoding), becomes more important.

We compared the performance of our CatBoostClassifier

Figure 6: Feature Importances for XSS Detection Model.

marginal contribution of each feature to the model’s output for individual predictions.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

130

model to several existing XSS detection models as reported

in previous studies, as shown in Table 1. This allows us to

see how our approach fares in the bigger picture of XSS

detection.

Figure 7: SHAP Value Plot for Benign Samples.

Table 1 is a comparison of our CatBoostClassifier model

to the other models. We used Accuracy, MCC, ROC AUC,

AP, Precision, Recall, and F1-score as metrics. The best

results are in bold.

As shown in Table 1, our CatBoostClassifier model beats

all the other models in all the metrics. And our CatBoost

model has perfect ROC AUC and Average Precision (AP),

1.00. That’s the ideal score, better than the other models

which don’t report ROC AUC and AP, but unlikely to reach

1.00. Our model’s Matthews Correlation Coefficient (MCC)

is also very high, 0.9974; that means it’s robust and

balanced. This comparison shows our proposed method

works well with hierarchical feature selection and

CatBoostClassifier.

Figure 8: Feature Importances for Malicious Samples.

IV. CONCLUSION

In conclusion, we have tackled the long-standing issue of

Cross-Site Scripting (XSS) detection by introducing a new

machine learning framework that combines hierarchical

feature selection with CatBoostClassifier. Our method,

using Spearman correlation-based feature selection to speed

up and reduce dimensionality, together with the robust

CatBoost algorithm, has achieved excellent results in

detecting XSS attacks. The CatBoostClassifier model got

Table 1: Performance Comparison with Existing XSS Detection Models.

Model Authors Accuracy MCC ROC

AUC

AP Precision Recall F1-score

DeepXSS [9] N/A N/A 0.98 N/A 99.5 0.979 98.7

ADTree N/A N/A N/A N/A 93.8 0.936 93.6

AdaBoost N/A N/A N/A N/A 94.1 0.939 93.9

Linear [12] 96.32 N/A N/A N/A 98.33 94.53 N/A

Polynomial 99.60 N/A N/A N/A 99.69 99.22 N/A

k-NN 99.75 N/A N/A N/A 99.88 99.61 N/A

RandomForest 99.50 N/A N/A N/A 99.84 99.15 N/A

FNN-16 [13] 99.78 N/A N/A N/A 99.94 99.53 N/A

FNN-34 99.88 N/A N/A N/A 99.98 99.75 N/A

Decision tree [14] 98,81 N/A N/A N/A 99,19 93,70 95,90

Naive Bayes 65,27 N/A N/A N/A 30,30 80,68 55,46

Logistic regression 83,03 N/A N/A N/A 39,68 0,20 39

SVM 71,37 N/A N/A N/A 27,82 43,21 48,06

CatBoost Ours 99,88 99,74 1,00 1,00 99,88 99,88 99,88

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

131

amazing performance metrics: 99.88% accuracy, perfect

ROC AUC and Average Precision 1.00, and Matthews

Correlation Coefficient 0.9974, clearly outperforming the

state-of-the-art XSS detection methods as shown in our

comparison. This paper not only proves the effectiveness of

gradient boosting methods, especially CatBoost, in

cybersecurity but also sets a new standard for XSS

detection. Feature and SHAP value analysis gives us more

insights into the most important features for XSS

vulnerabilities. Future work could be to test the model

against evolving XSS attack vectors and in real-world

deployment scenarios to make it more practical for web

application security.

REFERENCES

[1] Nair, S. S. (2024). Securing Against Advanced Cyber Threats: A
Comprehensive Guide to Phishing, XSS, and SQL Injection Defense.

Journal of Computer Science and Technology Studies, 6(1), 76-93.

[2] Rodríguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020).
Cross-site scripting (XSS) attacks and mitigation: A survey.

Computer Networks, 166, 106960.

[3] Hannousse, A., Yahiouche, S., & Nait-Hamoud, M. C. (2024).
Twenty-two years since revealing cross-site scripting attacks: a

systematic mapping and a comprehensive survey. Computer Science

Review, 52, 100634.
[4] Kaur, J., Garg, U., & Bathla, G. (2023). Detection of cross-site

scripting (XSS) attacks using machine learning techniques: a review.

Artificial Intelligence Review, 56(11), 12725-12769.
[5] Chinese Twitter hit by XSS worm. 2022.

https://news.softpedia.com/news/ Chinese-Twitter-Hit-by-XSS-

Worm-209292.shtml. (accessed on 2 January 2024).
[6] Digging Experience | constructing twitter XSS worm from twitter’s

XSS vulnerability. 2022. https://www.freebuf.com/vuls/203052.html.
(accessed on 2 January 2024).

[7] The 2021 hacker report. 2022.

https://www.hackerone.com/resources/reporting/ the-2021-hacker-

report.(accessed on 25 December 2023).

[8] Acunetix. 2021. The Invicti AppSEC Indicator Spring 2021 edition:

Acunetix Web Vulnerability Report. Acunetix. Retrieved from
https://www.acunetix.com/white-papers/acunetix-web-application-

vulnerability-report-2021/. (accessed on 3 January 2024).

[9] Fang, Y., Li, Y., Liu, L., & Huang, C. (2018, March). DeepXSS:
Cross site scripting detection based on deep learning. In Proceedings

of the 2018 international conference on computing and artificial

intelligence (pp. 47-51).
[10] Guan, H., Li, D., Li, H., & Zhao, M. (2022, December). A Crawler-

Based Vulnerability Detection Method for Cross-Site Scripting

Attacks. In 2022 IEEE 22nd International Conference on Software
Quality, Reliability, and Security Companion (QRS-C) (pp. 651-655).

IEEE.

[11] Kumar, J. H., & Ponsam, J. G. (2023, January). Cross site scripting
(XSS) Vulnerability detection using machine learning and statistical

analysis. In 2023 International Conference on Computer

Communication and Informatics (ICCCI) (pp. 1-9). IEEE.

[12] Mereani, F. A., & Howe, J. M. (2018, January). Detecting cross-site
scripting attacks using machine learning. In International conference

on advanced machine learning technologies and applications (pp. 200-

210). Cham: Springer International Publishing.
[13] Mereani, F., & Howe, J. M. (2019). Exact and approximate rule

extraction from neural networks with Boolean features. In

Proceedings of the 11th International Joint Conference on
Computational Intelligence (Vol. 1, pp. 424-433). SCITEPRESS-

Science and Technology Publications.

[14] Kascheev, S., & Olenchikova, T. (2020, November). The detecting
cross-site scripting (XSS) using machine learning methods. In 2020

global smart industry conference (GloSIC) (pp. 265-270). IEEE.

[15] Chen, H. C., Nshimiyimana, A., Damarjati, C., & Chang, P. H. (2021,
January). Detection and prevention of cross-site scripting attack with

combined approaches. In 2021 International conference on

electronics, information, and communication (ICEIC) (pp. 1-4). IEEE.
[16] Rodríguez-Galán, G., & Torres, J. (2024). Personal data filtering: a

systematic literature review comparing the effectiveness of XSS

attacks in web applications vs cookie stealing. Annals of
Telecommunications, 1-40.

[17] Liu, M., Zhang, B., Chen, W., & Zhang, X. (2019). A survey of

exploitation and detection methods of XSS vulnerabilities. IEEE
access, 7, 182004-182016.

[18] Alenzi, K. F., & Abbase, O. A. B. (2022). A Defensive Framework

for Reflected XSS in Client-Side Applications. Journal of Web
Engineering, 21(7), 2209-2229.

[19] Anagandula, K., & Zavarsky, P. (2020, June). An analysis of

effectiveness of black-box web application scanners in detection of
stored SQL injection and stored XSS vulnerabilities. In 2020 3rd

International Conference on Data Intelligence and Security (ICDIS)

(pp. 40-48). IEEE.
[20] Bensalim, S., Klein, D., Barber, T., & Johns, M. (2021, April).

Talking about my generation: Targeted dom-based xss exploit

generation using dynamic data flow analysis. In Proceedings of the
14th European Workshop on Systems Security (pp. 27-33).

[21] Giménez, C. T., Villegas, A. P., & Marañón, G. Á. (2010). HTTP data
set CSIC 2010. Information Security Institute of CSIC (Spanish

Research National Council), 64, 07.

[22] Wang, H., Lu, Y., & Zhai, C. (2011, August). Latent aspect rating
analysis without aspect keyword supervision. In Proceedings of the

17th ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 618-626).
[23] Rustam, F., Raza, A., Ashraf, I., & Jurcut, A. D. (2023, June). Deep

ensemble-based efficient framework for network attack detection. In

2023 21st Mediterranean Communication and Computer Networking
Conference (MedComNet) (pp. 1-10). IEEE.

[24] OWASP Top Ten. OWASP Foundation. Retrieved from

https://owasp.org/www-project-top-ten/. (accessed on 2 January
2024).

[25] Mukherjee, M., & Khushi, M. (2021). SMOTE-ENC: A novel

SMOTE-based method to generate synthetic data for nominal and
continuous features. Applied system innovation, 4(1), 18.

[26] Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient

boosting with categorical features support. arXiv preprint
arXiv:1810.11363.

[27] Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). SVM parameter

optimization using grid search and genetic algorithm to improve
classification performance. TELKOMNIKA (Telecommunication

Computing Electronics and Control), 14(4), 1502-1509.

