International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

Highly Accurate XSS Detection using CatBoost

Abdulkader Hajjouz, Elena Avksentieva

Abstract — Cross-Site Scripting (XSS) is still a big security
threat to web and user data. We need advanced detection
mechanisms to protect web applications. This paper presents a
new machine learning framework for XSS detection. We use
hierarchical feature selection with Spearman correlation to
reduce feature dimension and improve model interpretability,
and CatBoostClassifier, a gradient boosting algorithm known
for its robustness and performance. We tested our CatBoost-
based model on a large dataset, and it achieved 99.88%
accuracy, 1.00 ROC AUC, 1.00 Average Precision, and 0.9974
Matthews Correlation Coefficient. Compared to existing XSS
detection methods, our proposed framework outperforms the
benchmark models on all metrics. Feature importance and
SHAP value analysis also show the important features for XSS
classification. This paper proves our integrated approach is
effective and a good solution for XSS mitigation in web
applications.

Keywords— Cross-Site Scripting, Machine
Feature Selection, Web Security.

Learning,

I. INTRODUCTION

In the ever-changing landscape of cyber threats, Cross-Site
Scripting (XSS) remains a big challenge to web security [1].
These attacks exploit weaknesses in web applications, inject
malicious scripts, and put data integrity and users’ safety at
global risk [2]. The complexity of those attacks ranges from
simple scripting exploits to complex, obfuscated injection
that evades traditional detection mechanisms [3]. So, we
need detection strategies that are both versatile and precise.
Hence, we are seeing an increasing reliance on advanced
Machine Learning (ML) to mitigate these threats [4]. Web
application vulnerabilities are part of cyber threats and
affect businesses, governments, and organizations. Despite
the widespread deployment of Web Application Firewalls
(WAF), these are not foolproof, often because developers
are overlooking vulnerabilities at the coding stage—a
reflection of inadequate security protocols [2]. Recently, we
have seen many incidents where such vulnerabilities were
exploited, resulting in high-profile attacks on major social
media like Weibo and Twitter, where attackers got many
user’s identity tokens through XSS vulnerabilities [5-6].
These incidents show how common XSS attacks are and
how fast they can propagate across systems, making the
security landscape more complex. Although WAF can

Manuscript received March 24, 2025.

Abdulkader Hajjouz is with the National Research University ITMO,
Saint Petersburg, 191002 Russia (phone: +79693483331; e-mail:
hajjouz@itmo.ruy).

Elena Avksentieva is with the National Research University ITMO,
Saint Petersburg, 191002 Russia (e-mail: eavksenteva@itmao.ru).

intercept some network attacks, more than relying on WAF
technology for web application security is required. Insights
from HackerOne, a leading hacker platform, showed that
XSS vulnerabilities were the most reported issue until 2021,
around 23% of all vulnerabilities [7]. Also, according to
Acunetix’s 2021 security report, XSS is in the top 3 high-
severity threats, with a 0.5% increase from last year [8].
This proves that XSS is still a big risk to web security, and
we need to continue researching in this area. Our research
contributes to this by improving XSS detection using
machine learning models that balance simplicity and
accuracy. To illustrate the different approaches in XSS
detection, previous research has tried various methods. For
example, authors in [9] used Deep Learning techniques,
word2vec, and LSTM. Authors in [10] used a crawler-based
approach, combining web crawling with injection testing.
Authors in [11] used Machine Learning and Statistical
methods: LSTM, CNN, AdaBoost, SVM, and Random
Forest. Authors in [12-13] used Machine Learning
algorithms: SVM, k-NN, and Random Forest, along with
Neural Networks and Explainable Al (XAl). Authors in [14]
showed the effectiveness of Decision Trees in Machine
Learning. Authors in [16] combined different approaches:
Random Forest, Logistic Regression, and k-NN with CSP,
IDS, IPS, and WAF. These different results show that
machine learning can be used to improve XSS detection.

1. METHOLOGY

A. Attack Scenarios

XSS detection requires an understanding of all the different
attack scenarios, which vary greatly in complexity,
exploitability, and impact [2,16-17]. These scenarios
include reflected XSS, where malicious scripts execute
directly from a URL and pose an immediate threat [18];
stored XSS, where injected scripts persist in a website’s
database, activate when accessed, and require advanced
detection methods because of their latent nature [19]; and
DOM-based XSS, which involves real-time manipulation of
the client-side DOM without server interaction and can
evade traditional security controls [20].

B. Overview Of The Dataset

Our study uses a large dataset, mainly from [12] and
augmented with CSIC 2010 data [21], which consists of
43,218 files (28,068 benign, 9,068 plaintext from [23], and
15,150 malicious). This dataset has 65 features (HTML tags,
JavaScript events, and metadata for XSS exploits) and is
necessary to train XSS detection models that can distinguish
between good and bad content. To test thoroughly, the data
was divided into non-overlapping training (19,122 instances:
5,150 malicious, 13,972 benign), validation (12,048
instances: 5,000 malicious, 7,048 benign), and testing
(12,048 instances: 5,000 malicious, 7,048 benign) sets. This
dataset reflects the complexities of real-world scripting and

125

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

XSS attacks [8, 23-24] and is necessary to train a model that
can work with different XSS scenarios and be resilient to
emerging threats.

C. Stratified Sampling And Class Balancing

To train and evaluate our models robustly, we used stratified
sampling to split our dataset into training, validation, and
test sets, each with the same class distribution as the
original. Since we knew the class imbalance, especially in
the training set, which had 13,972 benign and 5,150
malicious samples, we used the Synthetic Minority Over-
sampling Technique for Nominal and Continuous
(SMOTENC) to generate synthetic samples for the minority
(malicious) class. This balanced the training set to 13,972
benign and 13,972 malicious samples, the validation set to
7,048 benign and 5,000 malicious samples, and the test set
remained the same as the original. As recommended in [25],
this is important to prevent model bias and to achieve fair
and accurate intrusion detection by ensuring both training
and testing phases reflect the diversity of the dataset.

D. Hierarchical Feature Selection Using Spearman
Correlation

To tackle the problems of high dimensionality and potential
multicollinearity in our initial 65 features, we used a
rigorous Hierarchical Feature Selection methodology based
on Spearman’s rank correlation coefficient. This method
offers a statistical way to identify and manage feature
redundancy by quantifying the monotonic relationship
between feature rankings, so it captures non-linear
relationships that linear correlation won't. The initial step
was to compute the Spearman correlation matrix for all
feature pairs in our dataset. This matrix contains the degree
and direction of the monotonic relationship between each
pair of variables. Then, we conducted Agglomerative
Hierarchical Clustering, utilizing the Spearman correlation
coefficients (converted into a dissimilarity measure), to
group features that have strong statistical similarity. The
resulting hierarchical structure is visualized through a
dendrogram, which shows the inter-feature relationships
based on their rank-order correlations. This hierarchical
structure allows us to identify clusters of features where the
underlying variability is almost shared. The critical step in
this process is to select one feature from each cluster. The
selection criterion is to preserve as much information and
variance as possible from the whole cluster while reducing
the dimensionality of the feature space as much as possible.
By focusing the subsequent modeling on a more sparse and
independent set of features, this hierarchical selection
methodology, based on Spearman correlation, is designed to
speed up our machine learning models so they converge
faster during training and are faster during inference. Also,
the dimensionality reduction can help with generalization by
reducing the risk of overfitting to redundant or less
informative features, so our XSS detection system will be
more robust and accurate.

Figure 1 shows the feature correlation before and after our
feature selection. The top heatmap is the Spearman
correlation matrix for the initial 65 features. Red is positive
correlation and blue is negative correlation, which means
potential redundancy. After removing highly correlated
features through our hierarchical approach, the bottom

heatmap is the correlation matrix for the 46 features. Figure
1 demonstrates that the color-coded cells show a significant
reduction in strong correlations (red and blue are less intense
and more white areas), which means we successfully
reduced the feature redundancy. The heatmap is showing the
Spearman correlation coefficients among the remaining
features, which means they are independent. This reduction
in correlations means we streamlined our model and we
have a more efficient and robust final feature set to detect
XSS vulnerabilities accurately and reliably without
sacrificing the predictive power.

10

[1 086

L 04

02

[] 0.2

-0.4
n

u -0.6

[1] 10
| L

Figure 1: Correlation Heatmaps Before and After Feature
Selection. (Top): Initial feature set correlation. (Bottom):
Correlation after hierarchical feature selection. Spearman

correlation coefficients are visualized with a red-white-blue
color scale.

E. Understanding CatBoost and Grid Search
Optimization for Enhanced XSS Detection

CatBoost, a gradient boosting framework over decision
trees, is great with complex tabular data and multi-class
classification, so it’s perfect for high-accuracy tasks like
attack detection, especially with imbalanced datasets [26].
Its Ordered Boosting mechanism prevents overfitting and
prediction bias by training trees on ordered data, and
Ordered Statistics allows to handle categorical features
without one-hot encoding. For multi-class problems,

126

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

CatBoost minimizes the Cross-Entropy loss function, which
measures the difference between predictions and actual
values, and iteratively refines the model. The Softmax
function converts these predictions into probabilities so that
they sum up to one, and the highest probability is the final
class. CatBoost performance is very dependent on
hyperparameters: number of iterations (trees), learning rate,
tree depth, L2 leaf regularization, min data in leaf, random
strength, grow policy (e.g., SymmetricTree, Depthwise,
Lossguide), overfitting detection parameters (od_type,
od_wait), and bootstrap techniques (Bernoulli with
subsample rates 0.66 and 0.8, Bayesian). To tune these
parameters, we used grid search strategy; we carefully
explored a predefined hyperparameter space [27]. We
trained and evaluated CatBoostClassifier on GPU for
computational efficiency for different combinations of these
parameters: limited number of iterations (500) to prevent
overfitting, learning rates 0.13 and 0.1 for controlled
convergence, depth 3 for simplicity, L2 regularization 1 and
3 for generalization, min data in leaf 1 and 5 for robust node
support, random strength 1-10 for learning diversity, and
different grow policies to fine-tune tree expansion.

IIl. RESULTS

To see how our CatBoostClassifier model did with Cross-
Site Scripting (XSS), we looked at the confusion matrix in
Figure 2. The confusion matrix shows the model predictions
against the actual labels of the test dataset, with 4 main
metrics: True Positives (TP), True Negatives (TN), False
Positives (FP), False Negatives (FN). In our case, True
Negatives are the benign samples (no XSS attack) and True
Positives are the malicious samples (XSS attacks). False
Positives are benign samples classified as malicious (Type |
error), and False Negatives are malicious samples classified
as benign (Type Il error).

7000

True Label

- 3000

- 2000

- 1000

0 1
Predicted Label

Figure 2: Confusion Matrix of the CatBoostClassifier
Model on the Test Set.

In Figure 2, we see the confusion matrix for the
CatBoostClassifier on the test set: 7041 TN (labeled benign
as benign), 7 FP (labeled benign as malicious), 8 FN
(labeled malicious as benign), 4992 TP (labeled malicious as
malicious). This gives us an initial view of how the model is
doing; it looks like a lot of correct classification for both
benign and malicious samples and not many false.

Figure 3 shows training and validation loss curves for
CatBoostClassifier training. As we can see, both training
loss (blue) and validation loss (orange) go down and
converge to a low value with number of iterations. This is a
good sign that the model learns from data and generalizes
well to unseen data (validation loss is similar to training
loss). And validation loss follows training loss closely,
which means the model is not overfitting.

CatBoost Loss Over lterations

06 | — Training Loss

Validation Loss

05

02

\

o1 ¥
00

0 50 100 150 200 250 300 350 400
fterations

Figure 3: CatBoost Training and Validation Loss Over
Iterations.

To measure how well our CatBoostClassifier model
worked, we calculated key metrics from the confusion
matrix, looking at both class-specific and overall
performance. For benign samples (Class 0), the model had a
precision of 99.89%; this means 99.89% of the samples it
classified as benign were actually benign, and we minimized
false alarms. The recall for benign samples was 99.90%; the
model is very good at finding almost all the actual benign
traffic. The F1-score for Class 0 was 99.89%; this means the
model is robust in classifying benign traffic, and we had
7048 actual benign samples in the test set. For malicious
samples (Class 1), which are XSS attacks, the precision was
99.86%; this is important to minimize false positives and
security alerts. The recall for malicious samples was
99.84%; the model is good at finding almost all the real XSS
threats, which is very important for security. The F1-score
for Class 1 was 99.85%; this means a good balance between
precision and recall in malicious sample detection, and we
had 5000 actual malicious samples. Overall, the model had
an accuracy of 99.88%; this means 99.88% of all the
samples in the test set were correctly classified. These very
high numbers for precision, recall, and F1-score for both
classes and overall accuracy mean the CatBoostClassifier
model is very good at detecting XSS vulnerabilities.

To evaluate our CatBoostClassifier more thoroughly, we
looked at the Receiver Operating Characteristic (ROC)
curve and the Precision-Recall (PR) curve in Figure 4 and
Figure 5, respectively. These curves show how the model
performs at different threshold settings.

Figure 4 displays the overall ROC curve for our
CatBoostClassifier. The ROC curve compares the True
Positive Rate (Sensitivity) against the False Positive Rate (1
- Specificity) at different categorisation thresholds. The
Area Under the ROC Curve (AUC) is a single statistic that
represents the performance of the classifier across all
thresholds. An AUC of 1.0 represents a perfect classifier.

127

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

Overall ROC Curve

08 -

=

@

Ay
\

True Positive Rate
Y

=]
i
AY

02 -

e —— Macro-average ROC (AUC = 1.0000)
00 *

00 02 04 06 08 1.0
False Positive Rate

Figure 4: Overall ROC Curve for CatBoostClassifier.

As shown in Figure 4, our model gets a Macro-average
ROC AUC of 1.0000. This means the CatBoostClassifier is
perfect at separating benign and malicious samples. A
perfect AUC of 1.0 means the model can perfectly separate
the positive and negative classes (malicious and benign in
our case), with no overlapping in the distributions of their
predicted scores. In XSS detection terms, this means the
model can get perfect balance between detecting actual XSS
attacks (high True Positive Rate) and low false alarms (low
False Positive Rate) at all thresholds.

Figure 5 shows the Precision-Recall curve for our multi-
class classification problem for Class 0 (Benign) and Class 1
(Malicious). The curve plots Precision against Recall at
different thresholds. The Average Precision (AP) is the
weighted mean of precisions at each threshold, with the
increase in recall from the previous threshold as the weight.
Higher AP means better; 1.0 is the maximum AP.

Precision-Recall curve for multi-class

1.0

09
08
5
S 07
@
o
06
05
—— Class 0 (AP = 1.0000)
Class 1 (AP = 1.0000)
04
00 02 04 06 08 10
Recall

Figure 5: Precision-Recall Curve for CatBoostClassifier.

As shown in Figure 5, our CatBoostClassifier has an
Average Precision (AP) of 1.0000 for both Class 0 (Benign)
and Class 1 (Malicious). These perfect AP scores are
amazing. An AP of 1.0 for both classes means the model is
perfect at all thresholds. For XSS detection, this means that
the model can have both high precision (minimise false

positives) and high recall (minimise false negatives)
simultaneously. This is critical for a security system since
we need to detect as many real threats as possible (high
recall) while minimising the number of false alarms that can
disrupt security operations (high precision).

The perfect ROC AUC of 1.0000 and perfect Average
Precision scores of 1.0000 for both classes, as seen in the
ROC and Precision-Recall curves, is visual proof of the
excellent performance of our CatBoostClassifier. These
results confirm the findings from the confusion matrix and
numerical metrics, we can see our model is very good at
detecting XSS with perfect balance of precision and recall.
The visual from these curves combined with the numbers is
strong evidence of our proposed method for XSS detection.

To prove the strength and stability of our
CatBoostClassifier model, we ran an analysis using the
Matthews Correlation Coefficient (MCC), which is a
balanced metric for binary classification. Our MCC values
are very high: Class 0 (benign samples) and Class 1
(malicious samples/XSS attacks) both are 0.9974, overall
MCC is 0.9974. These near-perfect MCC values mean the
predicted and actual classifications are almost perfect for
both benign and malicious traffic. The model is very good at
minimizing errors for both classes. This is also backed up by
our previous findings from the confusion matrix,
quantitative metrics, and curve analysis; this is another
evidence that our proposed CatBoost-based methodology is
working well for XSS vulnerability detection.

We did a feature importance analysis to see what’s inside
our CatBoostClassifier and which features are most
important in detecting XSS. CatBoost has a built-in way to
calculate feature importances based on how much each
feature contributes to the model’s decision. Figure 6 shows
the top features as per the CatBoostClassifier model. The
importance is quantified as a percentage, and the features
are ranked in descending order so we can easily see which
features are most important in XSS detection.

The feature importance is shown in Figure 6. As we can
see, there is a clear hierarchy of features for Cross-Site
Scripting (XSS) detection. The top feature, "Contains Less
Than," which means the presence of '<', is a strong indicator
of XSS attacks, followed by "Contains Question Mark,"
"ScriptTag,” "Contains Comma,” and "Numbers Ratio™ in
descending order. "Contains Less Than" and "ScriptTag" are
the HTML and JavaScript injection, which are the basis of
most XSS attacks. "Contains Question Mark" is the URL
query parameter reflected XSS. "Contains Comma,"
"Numbers Ratio,” "Contains And,” "Contains Slash,"
"Contains Semicolon,” "Contains Quotations,"” and
"Contains Percentage” are capturing the syntactic and
structural patterns of malicious scripts or encoded payloads.
This hierarchy gives us an idea of how the model is working
and what are the input characteristics that are indicative of
XSS vulnerabilities and what patterns the model is able to
detect from common XSS attack vectors. So, these findings
have practical implications for feature engineering and
where to focus the security efforts towards the most
important indicators of malicious activity.

To see how our CatBoostClassifier decides and what
features contribute to classifying samples as Class 0

128

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

Feature Importances

ScripTag
Contains Comma

Contains And m——
Contains Qutions m——
Contains Semicolon m—
Letters Ratio m——
Contains Hyphen m——
Contains JS m—

Contains Open Parenthesis m—

Contains Dots m—

Contains Break Line m——
Contains BackSlash ms

Contains Plus m

Contains Equal ms

Contains Document m—
Contains Underscore mm
Contains Single Quote mm

Numbuers Ratio m—————

Contains Slash m————————

Importance
o ro s = = =]] =
Coontains Less T iz
Contains Question I ark

Contains Percentage m—

Readable n
Contains At
Contains Power |

Contains Onerror

Contains <
Contains Duble Bracket

Contains ">< mm

Contains SRC mem
Contains Window mm

Contains Search m
Contains Onload m
Contains Dollar m
Contains location m
Contains iframe m
Contains StringfromCharCode n
Contains Hash
Contains tilde
Contains &#
Contains Broken Bar
Contains href
Contains Grave
Contains DIV
Contains Eval
Contains "><

Features

Figure 6: Feature Importances for XSS Detection Model.

(benign) or Class 1 (malicious), we did a SHAP (SHapley
Additive exPlanations) value analysis. SHAP values provide
a unified measure of feature importance, quantifying the
marginal contribution of each feature to the model’s output
for individual predictions.

Figure 7 shows the SHAP values for features that affect
benign samples (Class 0). Features are sorted by importance,
the x-axis is SHAP value (impact on output), points are
colored by feature value (red = high, blue = low).

Figure 8 shows the SHAP values for features that affect
malicious samples (Class 1, XSS attacks). Same as Figure 7,
features are sorted by importance, points are colored by
feature value.

For Class 0 (Benign Samples) (Figure 7), the SHAP
analysis shows that features like "Contains Less Than,"
"Contains Question Mark," and "Contains Comma" are
important. For "Contains Less Than" and "Contains
Question Mark," the higher feature values (red points) have
negative SHAP values (to the left of the vertical center line).
So, when these features are more present, they tend to
decrease the chances of the sample being classified as
benign, which might seem counterintuitive at first. But it
could be because, while these characters are common in
benign text, their absence is even more characteristic of
benign content in this dataset. Features like "ScriptTag" and
"Contains JS" also seem to have an impact, with varying

SHAP values depending on their presence.

For Class 1 (Malicious Samples - XSS Attacks) (Figure 8),
the SHAP plot is different. Features like "Contains Broken
Bar", "Letters Ratio", and "Numbers Ratio" are among the
most important. In this plot, the direction of feature impact
is not clear from this snippet, but a full SHAP plot would
show how high or low values of these features affect the
prediction towards the malicious class. Note that features
that are important for Class 1 might not be the opposite of
those for Class O, because distinguishing malicious from
benign content is complex, and the model learns nuanced
patterns.

The SHAP value analysis gives us a fine-grain view of
feature contributions. SHAP plots show how each feature
affects the prediction for individual samples and for each
class. The fact that features like “Contains Less Than” and
“Contains Question Mark” have a negative SHAP value for
benign class prediction means it’s a complex relationship.
It’s possible that for benign samples in this dataset, the
absence or lower frequency of these characters is more
indicative of benign content than their presence. For
malicious samples, the presence of different sets of features,
perhaps related to encoding or obfuscation techniques (as
“Contains Broken Bar,” if it refers to special characters used
in encoding), becomes more important.

We compared the performance of our CatBoostClassifier

129

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

model to several existing XSS detection models as reported
in previous studies, as shown in Table 1. This allows us to
see how our approach fares in the bigger picture of XSS
detection.

High
Contains Less Than mp— —-—#‘4
Contains Question Mark -"'-" o o -.-'I'
ScripTag * s mmummmpee o ——‘-P
Contains Comma -ﬂ-- * o cnpfu—
Contains JS ’ - D
Contains Slash —-—* o ciliiere
Contains Hyphen -’ 4
Contains Break Line sl ~'
Contains Semicolon - -‘-0—4 N
Numbuers Ratio ——# §
Contains And '-_-' %
Contains Percentage - canf *— .
Contains Plus -
Letters Ratio '_—+ seem
Contains < =y '
Contains Equal +-
Contains Single Quote +-——
Contains Open Parenthesis - -ﬂ--
Contains BackSlash -—‘ . oo e
Contains Qutions S *-‘-‘-
E N T EEE T SR S

SHAP value (impact on model output)

Figure 7: SHAP Value Plot for Benign Samples.

1.00. Our model’s Matthews Correlation Coefficient (MCC)
is also very high, 0.9974; that means it’s robust and
balanced. This comparison shows our proposed method
works well with hierarchical feature selection and
CatBoostClassifier.

High

Contains Dots

Contains StringfromCharCode = o
Letters Ratio . -*
Numbuers Ratio
Contains JS
Contains Slash |
Contains Hyphen '

Contains Broken Bar
Contains Underscore

Contains Equal

Feature value

Contains Question Mark 'l

Contains At
Contains And
Readable

Contains Qutions
Contains Less Than 9
Contains Document
Contains "><
Contains DIV

l..
|
k
3
|
|
l.
|
|
|
|
J
|
|
|

Contains < l

0002 -0001 0000 0001 0002
SHAP value (impact on model output)

Figure 8: Feature Importances for Malicious Samples.

Table 1: Performance Comparison with Existing XSS Detection Models.

Model Authors | Accuracy | MCC ROC AP Precision | Recall F1-score
AUC
DeepXSS [9] N/A N/A 0.98 N/A 99.5 0.979 98.7
ADTree N/A N/A N/A N/A 93.8 0.936 93.6
AdaBoost N/A N/A N/A N/A 94.1 0.939 93.9
Linear [12] 96.32 N/A N/A N/A 98.33 94.53 N/A
Polynomial 99.60 N/A N/A N/A 99.69 99.22 N/A
k-NN 99.75 N/A N/A N/A 99.88 99.61 N/A
RandomForest 99.50 N/A N/A N/A 99.84 99.15 N/A
FNN-16 [13] 99.78 N/A N/A N/A 99.94 99.53 N/A
FNN-34 99.88 N/A N/A N/A 99.98 99.75 N/A
Decision tree [14] 98,81 N/A N/A N/A 99,19 93,70 95,90
Naive Bayes 65,27 N/A N/A N/A 30,30 80,68 55,46
Logistic regression 83,03 N/A N/A N/A 39,68 0,20 39
SVM 71,37 N/A N/A N/A 27,82 43,21 48,06
CatBoost Ours 99,88 99,74 1,00 1,00 99,88 99,88 99,88

Table 1 is a comparison of our CatBoostClassifier model
to the other models. We used Accuracy, MCC, ROC AUC,
AP, Precision, Recall, and F1-score as metrics. The best

results are in bold.

As shown in Table 1, our CatBoostClassifier model beats
all the other models in all the metrics. And our CatBoost
model has perfect ROC AUC and Average Precision (AP),
1.00. That’s the ideal score, better than the other models
which don’t report ROC AUC and AP, but unlikely to reach

IV. CONCLUSION

In conclusion, we have tackled the long-standing issue of
Cross-Site Scripting (XSS) detection by introducing a new
machine learning framework that combines hierarchical
feature selection with CatBoostClassifier. Our method,
using Spearman correlation-based feature selection to speed
up and reduce dimensionality, together with the robust
CatBoost algorithm, has achieved excellent results in
detecting XSS attacks. The CatBoostClassifier model got

130

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

amazing performance metrics: 99.88% accuracy, perfect
ROC AUC and Average Precision 1.00, and Matthews
Correlation Coefficient 0.9974, clearly outperforming the
state-of-the-art XSS detection methods as shown in our
comparison. This paper not only proves the effectiveness of
gradient boosting methods, especially CatBoost, in
cybersecurity but also sets a new standard for XSS
detection. Feature and SHAP value analysis gives us more
insights into the most important features for XSS
vulnerabilities. Future work could be to test the model
against evolving XSS attack vectors and in real-world
deployment scenarios to make it more practical for web
application security.

REFERENCES

[1] Nair, S. S. (2024). Securing Against Advanced Cyber Threats: A
Comprehensive Guide to Phishing, XSS, and SQL Injection Defense.
Journal of Computer Science and Technology Studies, 6(1), 76-93.

[2] Rodriguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020).
Cross-site scripting (XSS) attacks and mitigation: A survey.
Computer Networks, 166, 106960.

[3] Hannousse, A., Yahiouche, S., & Nait-Hamoud, M. C. (2024).
Twenty-two years since revealing cross-site scripting attacks: a
systematic mapping and a comprehensive survey. Computer Science
Review, 52, 100634.

[4] Kaur, J., Garg, U., & Bathla, G. (2023). Detection of cross-site
scripting (XSS) attacks using machine learning techniques: a review.
Artificial Intelligence Review, 56(11), 12725-12769.

[5] Chinese Twitter hit by XSS worm. 2022.
https://news.softpedia.com/news/ Chinese-Twitter-Hit-by-XSS-
Worm-209292.shtml. (accessed on 2 January 2024).

[6] Digging Experience | constructing twitter XSS worm from twitter’s
XSS vulnerability. 2022. https://www.freebuf.com/vuls/203052.html.
(accessed on 2 January 2024).

[7] The 2021 hacker
https://www.hackerone.com/resources/reporting/
report.(accessed on 25 December 2023).

[8] Acunetix. 2021. The Invicti AppSEC Indicator Spring 2021 edition:
Acunetix Web Vulnerability Report. Acunetix. Retrieved from
https://www.acunetix.com/white-papers/acunetix-web-application-
vulnerability-report-2021/. (accessed on 3 January 2024).

[9] Fang, Y., Li, Y., Liu, L., & Huang, C. (2018, March). DeepXSS:
Cross site scripting detection based on deep learning. In Proceedings
of the 2018 international conference on computing and artificial
intelligence (pp. 47-51).

[10] Guan, H., Li, D., Li, H., & Zhao, M. (2022, December). A Crawler-
Based Vulnerability Detection Method for Cross-Site Scripting
Attacks. In 2022 IEEE 22nd International Conference on Software
Quality, Reliability, and Security Companion (QRS-C) (pp. 651-655).
IEEE.

[11] Kumar, J. H., & Ponsam, J. G. (2023, January). Cross site scripting
(XSS) Vulnerability detection using machine learning and statistical
analysis. In 2023 International Conference on Computer
Communication and Informatics (ICCCI) (pp. 1-9). IEEE.

report. 2022.
the-2021-hacker-

[12] Mereani, F. A., & Howe, J. M. (2018, January). Detecting cross-site
scripting attacks using machine learning. In International conference
on advanced machine learning technologies and applications (pp. 200-
210). Cham: Springer International Publishing.

[13] Mereani, F., & Howe, J. M. (2019). Exact and approximate rule
extraction from neural networks with Boolean features. In
Proceedings of the 11th International Joint Conference on
Computational Intelligence (Vol. 1, pp. 424-433). SCITEPRESS-
Science and Technology Publications.

[14] Kascheev, S., & Olenchikova, T. (2020, November). The detecting
cross-site scripting (XSS) using machine learning methods. In 2020
global smart industry conference (GloSIC) (pp. 265-270). IEEE.

[15] Chen, H. C., Nshimiyimana, A., Damarjati, C., & Chang, P. H. (2021,
January). Detection and prevention of cross-site scripting attack with
combined approaches. In 2021 International conference on
electronics, information, and communication (ICEIC) (pp. 1-4). IEEE.

[16] Rodriguez-Galan, G., & Torres, J. (2024). Personal data filtering: a
systematic literature review comparing the effectiveness of XSS
attacks in web applications vs cookie stealing. Annals of
Telecommunications, 1-40.

[17] Liu, M., Zhang, B., Chen, W., & Zhang, X. (2019). A survey of
exploitation and detection methods of XSS wvulnerabilities. IEEE
access, 7, 182004-182016.

[18] Alenzi, K. F., & Abbase, O. A. B. (2022). A Defensive Framework
for Reflected XSS in Client-Side Applications. Journal of Web
Engineering, 21(7), 2209-2229.

[19] Anagandula, K., & Zavarsky, P. (2020, June). An analysis of
effectiveness of black-box web application scanners in detection of
stored SQL injection and stored XSS vulnerabilities. In 2020 3rd
International Conference on Data Intelligence and Security (ICDIS)
(pp. 40-48). IEEE.

[20] Bensalim, S., Klein, D., Barber, T., & Johns, M. (2021, April).
Talking about my generation: Targeted dom-based xss exploit
generation using dynamic data flow analysis. In Proceedings of the
14th European Workshop on Systems Security (pp. 27-33).

[21] Giménez, C. T., Villegas, A. P., & Maraiion, G. A. (2010). HTTP data
set CSIC 2010. Information Security Institute of CSIC (Spanish
Research National Council), 64, 07.

[22] Wang, H., Lu, Y., & Zhai, C. (2011, August). Latent aspect rating
analysis without aspect keyword supervision. In Proceedings of the
17th ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 618-626).

[23] Rustam, F., Raza, A., Ashraf, I., & Jurcut, A. D. (2023, June). Deep
ensemble-based efficient framework for network attack detection. In
2023 21st Mediterranean Communication and Computer Networking
Conference (MedComNet) (pp. 1-10). IEEE.

[24] OWASP Top Ten. OWASP Foundation. Retrieved from
https://owasp.org/www-project-top-ten/. (accessed on 2 January
2024).

[25] Mukherjee, M., & Khushi, M. (2021). SMOTE-ENC: A novel
SMOTE-based method to generate synthetic data for nominal and
continuous features. Applied system innovation, 4(1), 18.

[26] Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient
boosting with categorical features support. arXiv preprint
arXiv:1810.11363.

[27] Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). SVM parameter
optimization using grid search and genetic algorithm to improve
classification performance. TELKOMNIKA (Telecommunication
Computing Electronics and Control), 14(4), 1502-1509.

131

