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Abstract — Cross-Site Scripting (XSS) is still a big security 

threat to web and user data. We need advanced detection 

mechanisms to protect web applications. This paper presents a 

new machine learning framework for XSS detection. We use 

hierarchical feature selection with Spearman correlation to 

reduce feature dimension and improve model interpretability, 

and CatBoostClassifier, a gradient boosting algorithm known 

for its robustness and performance. We tested our CatBoost-

based model on a large dataset, and it achieved 99.88% 

accuracy, 1.00 ROC AUC, 1.00 Average Precision, and 0.9974 

Matthews Correlation Coefficient. Compared to existing XSS 

detection methods, our proposed framework outperforms the 

benchmark models on all metrics. Feature importance and 

SHAP value analysis also show the important features for XSS 

classification. This paper proves our integrated approach is 

effective and a good solution for XSS mitigation in web 

applications. 

 
Keywords— Cross-Site Scripting, Machine Learning, 

Feature Selection, Web Security. 

 

I. INTRODUCTION 

In the ever-changing landscape of cyber threats, Cross-Site 

Scripting (XSS) remains a big challenge to web security [1]. 

These attacks exploit weaknesses in web applications, inject 

malicious scripts, and put data integrity and users’ safety at 

global risk [2]. The complexity of those attacks ranges from 

simple scripting exploits to complex, obfuscated injection 

that evades traditional detection mechanisms [3]. So, we 

need detection strategies that are both versatile and precise. 

Hence, we are seeing an increasing reliance on advanced 

Machine Learning (ML) to mitigate these threats [4]. Web 

application vulnerabilities are part of cyber threats and 

affect businesses, governments, and organizations. Despite 

the widespread deployment of Web Application Firewalls 

(WAF), these are not foolproof, often because developers 

are overlooking vulnerabilities at the coding stage—a 

reflection of inadequate security protocols [2]. Recently, we 

have seen many incidents where such vulnerabilities were 

exploited, resulting in high-profile attacks on major social 

media like Weibo and Twitter, where attackers got many 

user’s identity tokens through XSS vulnerabilities [5–6]. 

These incidents show how common XSS attacks are and 

how fast they can propagate across systems, making the 

security landscape more complex. Although WAF can 
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intercept some network attacks, more than relying on WAF 

technology for web application security is required. Insights 

from HackerOne, a leading hacker platform, showed that 

XSS vulnerabilities were the most reported issue until 2021, 

around 23% of all vulnerabilities [7]. Also, according to 

Acunetix’s 2021 security report, XSS is in the top 3 high-

severity threats, with a 0.5% increase from last year [8]. 

This proves that XSS is still a big risk to web security, and 

we need to continue researching in this area. Our research 

contributes to this by improving XSS detection using 

machine learning models that balance simplicity and 

accuracy. To illustrate the different approaches in XSS 

detection, previous research has tried various methods. For 

example, authors in [9] used Deep Learning techniques, 

word2vec, and LSTM. Authors in [10] used a crawler-based 

approach, combining web crawling with injection testing. 

Authors in [11] used Machine Learning and Statistical 

methods: LSTM, CNN, AdaBoost, SVM, and Random 

Forest. Authors in [12–13] used Machine Learning 

algorithms: SVM, k-NN, and Random Forest, along with 

Neural Networks and Explainable AI (XAI). Authors in [14] 

showed the effectiveness of Decision Trees in Machine 

Learning. Authors in [16] combined different approaches: 

Random Forest, Logistic Regression, and k-NN with CSP, 

IDS, IPS, and WAF. These different results show that 

machine learning can be used to improve XSS detection. 

II. METHOLOGY 

A. Attack Scenarios 

XSS detection requires an understanding of all the different 

attack scenarios, which vary greatly in complexity, 

exploitability, and impact [2,16–17]. These scenarios 

include reflected XSS, where malicious scripts execute 

directly from a URL and pose an immediate threat [18]; 

stored XSS, where injected scripts persist in a website’s 

database, activate when accessed, and require advanced 

detection methods because of their latent nature [19]; and 

DOM-based XSS, which involves real-time manipulation of 

the client-side DOM without server interaction and can 

evade traditional security controls [20]. 

B. Overview Of The Dataset 

Our study uses a large dataset, mainly from [12] and 

augmented with CSIC 2010 data [21], which consists of 

43,218 files (28,068 benign, 9,068 plaintext from [23], and 

15,150 malicious). This dataset has 65 features (HTML tags, 

JavaScript events, and metadata for XSS exploits) and is 

necessary to train XSS detection models that can distinguish 

between good and bad content. To test thoroughly, the data 

was divided into non-overlapping training (19,122 instances: 

5,150 malicious, 13,972 benign), validation (12,048 

instances: 5,000 malicious, 7,048 benign), and testing 

(12,048 instances: 5,000 malicious, 7,048 benign) sets. This 

dataset reflects the complexities of real-world scripting and 
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XSS attacks [8, 23–24] and is necessary to train a model that 

can work with different XSS scenarios and be resilient to 

emerging threats. 

C. Stratified Sampling And Class Balancing 

To train and evaluate our models robustly, we used stratified 

sampling to split our dataset into training, validation, and 

test sets, each with the same class distribution as the 

original. Since we knew the class imbalance, especially in 

the training set, which had 13,972 benign and 5,150 

malicious samples, we used the Synthetic Minority Over-

sampling Technique for Nominal and Continuous 

(SMOTENC) to generate synthetic samples for the minority 

(malicious) class. This balanced the training set to 13,972 

benign and 13,972 malicious samples, the validation set to 

7,048 benign and 5,000 malicious samples, and the test set 

remained the same as the original. As recommended in [25], 

this is important to prevent model bias and to achieve fair 

and accurate intrusion detection by ensuring both training 

and testing phases reflect the diversity of the dataset.  

D. Hierarchical Feature Selection Using Spearman 

Correlation 

To tackle the problems of high dimensionality and potential 

multicollinearity in our initial 65 features, we used a 

rigorous Hierarchical Feature Selection methodology based 

on Spearman’s rank correlation coefficient. This method 

offers a statistical way to identify and manage feature 

redundancy by quantifying the monotonic relationship 

between feature rankings, so it captures non-linear 

relationships that linear correlation won't. The initial step 

was to compute the Spearman correlation matrix for all 

feature pairs in our dataset. This matrix contains the degree 

and direction of the monotonic relationship between each 

pair of variables. Then, we conducted Agglomerative 

Hierarchical Clustering, utilizing the Spearman correlation 

coefficients (converted into a dissimilarity measure), to 

group features that have strong statistical similarity. The 

resulting hierarchical structure is visualized through a 

dendrogram, which shows the inter-feature relationships 

based on their rank-order correlations. This hierarchical 

structure allows us to identify clusters of features where the 

underlying variability is almost shared. The critical step in 

this process is to select one feature from each cluster. The 

selection criterion is to preserve as much information and 

variance as possible from the whole cluster while reducing 

the dimensionality of the feature space as much as possible. 

By focusing the subsequent modeling on a more sparse and 

independent set of features, this hierarchical selection 

methodology, based on Spearman correlation, is designed to 

speed up our machine learning models so they converge 

faster during training and are faster during inference. Also, 

the dimensionality reduction can help with generalization by 

reducing the risk of overfitting to redundant or less 

informative features, so our XSS detection system will be 

more robust and accurate.  

Figure 1 shows the feature correlation before and after our 

feature selection. The top heatmap is the Spearman 

correlation matrix for the initial 65 features. Red is positive 

correlation and blue is negative correlation, which means 

potential redundancy. After removing highly correlated 

features through our hierarchical approach, the bottom 

heatmap is the correlation matrix for the 46 features. Figure 

1 demonstrates that the color-coded cells show a significant 

reduction in strong correlations (red and blue are less intense 

and more white areas), which means we successfully 

reduced the feature redundancy. The heatmap is showing the 

Spearman correlation coefficients among the remaining 

features, which means they are independent. This reduction 

in correlations means we streamlined our model and we 

have a more efficient and robust final feature set to detect 

XSS vulnerabilities accurately and reliably without 

sacrificing the predictive power. 

 
Figure 1: Correlation Heatmaps Before and After Feature 

Selection. (Top): Initial feature set correlation. (Bottom): 

Correlation after hierarchical feature selection. Spearman 

correlation coefficients are visualized with a red-white-blue 

color scale.   

E. Understanding CatBoost and Grid Search 

Optimization for Enhanced XSS Detection 

CatBoost, a gradient boosting framework over decision 

trees, is great with complex tabular data and multi-class 

classification, so it’s perfect for high-accuracy tasks like 

attack detection, especially with imbalanced datasets [26]. 

Its Ordered Boosting mechanism prevents overfitting and 

prediction bias by training trees on ordered data, and 

Ordered Statistics allows to handle categorical features 

without one-hot encoding. For multi-class problems, 
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CatBoost minimizes the Cross-Entropy loss function, which 

measures the difference between predictions and actual 

values, and iteratively refines the model. The Softmax 

function converts these predictions into probabilities so that 

they sum up to one, and the highest probability is the final 

class. CatBoost performance is very dependent on 

hyperparameters: number of iterations (trees), learning rate, 

tree depth, L2 leaf regularization, min data in leaf, random 

strength, grow policy (e.g., SymmetricTree, Depthwise, 

Lossguide), overfitting detection parameters (od_type, 

od_wait), and bootstrap techniques (Bernoulli with 

subsample rates 0.66 and 0.8, Bayesian). To tune these 

parameters, we used grid search strategy; we carefully 

explored a predefined hyperparameter space [27]. We 

trained and evaluated CatBoostClassifier on GPU for 

computational efficiency for different combinations of these 

parameters: limited number of iterations (500) to prevent 

overfitting, learning rates 0.13 and 0.1 for controlled 

convergence, depth 3 for simplicity, L2 regularization 1 and 

3 for generalization, min data in leaf 1 and 5 for robust node 

support, random strength 1–10 for learning diversity, and 

different grow policies to fine-tune tree expansion. 

III. RESULTS 

To see how our CatBoostClassifier model did with Cross-

Site Scripting (XSS), we looked at the confusion matrix in 

Figure 2. The confusion matrix shows the model predictions 

against the actual labels of the test dataset, with 4 main 

metrics: True Positives (TP), True Negatives (TN), False 

Positives (FP), False Negatives (FN). In our case, True 

Negatives are the benign samples (no XSS attack) and True 

Positives are the malicious samples (XSS attacks). False 

Positives are benign samples classified as malicious (Type I 

error), and False Negatives are malicious samples classified 

as benign (Type II error).  

 
Figure 2: Confusion Matrix of the CatBoostClassifier 

Model on the Test Set.  

 

In Figure 2, we see the confusion matrix for the 

CatBoostClassifier on the test set: 7041 TN (labeled benign 

as benign), 7 FP (labeled benign as malicious), 8 FN 

(labeled malicious as benign), 4992 TP (labeled malicious as 

malicious). This gives us an initial view of how the model is 

doing; it looks like a lot of correct classification for both 

benign and malicious samples and not many false. 

Figure 3 shows training and validation loss curves for 

CatBoostClassifier training. As we can see, both training 

loss (blue) and validation loss (orange) go down and 

converge to a low value with number of iterations. This is a 

good sign that the model learns from data and generalizes 

well to unseen data (validation loss is similar to training 

loss). And validation loss follows training loss closely, 

which means the model is not overfitting. 

 
Figure 3: CatBoost Training and Validation Loss Over 

Iterations.   

 

To measure how well our CatBoostClassifier model 

worked, we calculated key metrics from the confusion 

matrix, looking at both class-specific and overall 

performance. For benign samples (Class 0), the model had a 

precision of 99.89%; this means 99.89% of the samples it 

classified as benign were actually benign, and we minimized 

false alarms. The recall for benign samples was 99.90%; the 

model is very good at finding almost all the actual benign 

traffic. The F1-score for Class 0 was 99.89%; this means the 

model is robust in classifying benign traffic, and we had 

7048 actual benign samples in the test set. For malicious 

samples (Class 1), which are XSS attacks, the precision was 

99.86%; this is important to minimize false positives and 

security alerts. The recall for malicious samples was 

99.84%; the model is good at finding almost all the real XSS 

threats, which is very important for security. The F1-score 

for Class 1 was 99.85%; this means a good balance between 

precision and recall in malicious sample detection, and we 

had 5000 actual malicious samples. Overall, the model had 

an accuracy of 99.88%; this means 99.88% of all the 

samples in the test set were correctly classified. These very 

high numbers for precision, recall, and F1-score for both 

classes and overall accuracy mean the CatBoostClassifier 

model is very good at detecting XSS vulnerabilities. 

To evaluate our CatBoostClassifier more thoroughly, we 

looked at the Receiver Operating Characteristic (ROC) 

curve and the Precision-Recall (PR) curve in Figure 4 and 

Figure 5, respectively. These curves show how the model 

performs at different threshold settings. 

Figure 4 displays the overall ROC curve for our 

CatBoostClassifier. The ROC curve compares the True 

Positive Rate (Sensitivity) against the False Positive Rate (1 

- Specificity) at different categorisation thresholds. The 

Area Under the ROC Curve (AUC) is a single statistic that 

represents the performance of the classifier across all 

thresholds. An AUC of 1.0 represents a perfect classifier. 
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Figure 4: Overall ROC Curve for CatBoostClassifier.  

 

As shown in Figure 4, our model gets a Macro-average 

ROC AUC of 1.0000. This means the CatBoostClassifier is 

perfect at separating benign and malicious samples. A 

perfect AUC of 1.0 means the model can perfectly separate 

the positive and negative classes (malicious and benign in 

our case), with no overlapping in the distributions of their 

predicted scores. In XSS detection terms, this means the 

model can get perfect balance between detecting actual XSS 

attacks (high True Positive Rate) and low false alarms (low 

False Positive Rate) at all thresholds. 

Figure 5 shows the Precision-Recall curve for our multi-

class classification problem for Class 0 (Benign) and Class 1 

(Malicious). The curve plots Precision against Recall at 

different thresholds. The Average Precision (AP) is the 

weighted mean of precisions at each threshold, with the 

increase in recall from the previous threshold as the weight. 

Higher AP means better; 1.0 is the maximum AP. 

 
Figure 5: Precision-Recall Curve for CatBoostClassifier.  

 

As shown in Figure 5, our CatBoostClassifier has an 

Average Precision (AP) of 1.0000 for both Class 0 (Benign) 

and Class 1 (Malicious). These perfect AP scores are 

amazing. An AP of 1.0 for both classes means the model is 

perfect at all thresholds. For XSS detection, this means that 

the model can have both high precision (minimise false 

positives) and high recall (minimise false negatives) 

simultaneously. This is critical for a security system since 

we need to detect as many real threats as possible (high 

recall) while minimising the number of false alarms that can 

disrupt security operations (high precision). 

The perfect ROC AUC of 1.0000 and perfect Average 

Precision scores of 1.0000 for both classes, as seen in the 

ROC and Precision-Recall curves, is visual proof of the 

excellent performance of our CatBoostClassifier. These 

results confirm the findings from the confusion matrix and 

numerical metrics, we can see our model is very good at 

detecting XSS with perfect balance of precision and recall. 

The visual from these curves combined with the numbers is 

strong evidence of our proposed method for XSS detection. 

To prove the strength and stability of our 

CatBoostClassifier model, we ran an analysis using the 

Matthews Correlation Coefficient (MCC), which is a 

balanced metric for binary classification. Our MCC values 

are very high: Class 0 (benign samples) and Class 1 

(malicious samples/XSS attacks) both are 0.9974, overall 

MCC is 0.9974. These near-perfect MCC values mean the 

predicted and actual classifications are almost perfect for 

both benign and malicious traffic. The model is very good at 

minimizing errors for both classes. This is also backed up by 

our previous findings from the confusion matrix, 

quantitative metrics, and curve analysis; this is another 

evidence that our proposed CatBoost-based methodology is 

working well for XSS vulnerability detection. 

We did a feature importance analysis to see what’s inside 

our CatBoostClassifier and which features are most 

important in detecting XSS. CatBoost has a built-in way to 

calculate feature importances based on how much each 

feature contributes to the model’s decision. Figure 6 shows 

the top features as per the CatBoostClassifier model. The 

importance is quantified as a percentage, and the features 

are ranked in descending order so we can easily see which 

features are most important in XSS detection. 

The feature importance is shown in Figure 6. As we can 

see, there is a clear hierarchy of features for Cross-Site 

Scripting (XSS) detection. The top feature, "Contains Less 

Than," which means the presence of '<', is a strong indicator 

of XSS attacks, followed by "Contains Question Mark," 

"ScriptTag," "Contains Comma," and "Numbers Ratio" in 

descending order. "Contains Less Than" and "ScriptTag" are 

the HTML and JavaScript injection, which are the basis of 

most XSS attacks. "Contains Question Mark" is the URL 

query parameter reflected XSS. "Contains Comma," 

"Numbers Ratio," "Contains And," "Contains Slash," 

"Contains Semicolon," "Contains Quotations," and 

"Contains Percentage" are capturing the syntactic and 

structural patterns of malicious scripts or encoded payloads. 

This hierarchy gives us an idea of how the model is working 

and what are the input characteristics that are indicative of 

XSS vulnerabilities and what patterns the model is able to 

detect from common XSS attack vectors. So, these findings 

have practical implications for feature engineering and 

where to focus the security efforts towards the most 

important indicators of malicious activity.  

To see how our CatBoostClassifier decides and what 

features contribute to classifying samples as Class 0 
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(benign) or Class 1 (malicious), we did a SHAP (SHapley 

Additive exPlanations) value analysis. SHAP values provide 

a unified measure of feature importance, quantifying the 

marginal contribution of each feature to the model’s output 

for individual predictions. 

Figure 7 shows the SHAP values for features that affect 

benign samples (Class 0). Features are sorted by importance, 

the x-axis is SHAP value (impact on output), points are 

colored by feature value (red = high, blue = low). 

Figure 8 shows the SHAP values for features that affect 

malicious samples (Class 1, XSS attacks). Same as Figure 7, 

features are sorted by importance, points are colored by 

feature value. 

For Class 0 (Benign Samples) (Figure 7), the SHAP 

analysis shows that features like "Contains Less Than," 

"Contains Question Mark," and "Contains Comma" are 

important. For "Contains Less Than" and "Contains 

Question Mark," the higher feature values (red points) have 

negative SHAP values (to the left of the vertical center line). 

So, when these features are more present, they tend to 

decrease the chances of the sample being classified as 

benign, which might seem counterintuitive at first. But it 

could be because, while these characters are common in 

benign text, their absence is even more characteristic of 

benign content in this dataset. Features like "ScriptTag" and 

"Contains JS" also seem to have an impact, with varying 

SHAP values depending on their presence. 

For Class 1 (Malicious Samples - XSS Attacks) (Figure 8), 

the SHAP plot is different. Features like "Contains Broken 

Bar", "Letters Ratio", and "Numbers Ratio" are among the 

most important. In this plot, the direction of feature impact 

is not clear from this snippet, but a full SHAP plot would 

show how high or low values of these features affect the 

prediction towards the malicious class. Note that features 

that are important for Class 1 might not be the opposite of 

those for Class 0, because distinguishing malicious from 

benign content is complex, and the model learns nuanced 

patterns. 

The SHAP value analysis gives us a fine-grain view of 

feature contributions. SHAP plots show how each feature 

affects the prediction for individual samples and for each 

class. The fact that features like “Contains Less Than” and 

“Contains Question Mark” have a negative SHAP value for 

benign class prediction means it’s a complex relationship. 

It’s possible that for benign samples in this dataset, the 

absence or lower frequency of these characters is more 

indicative of benign content than their presence. For 

malicious samples, the presence of different sets of features, 

perhaps related to encoding or obfuscation techniques (as 

“Contains Broken Bar,” if it refers to special characters used 

in encoding), becomes more important. 

We compared the performance of our CatBoostClassifier 

 
Figure 6: Feature Importances for XSS Detection Model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

marginal contribution of each feature to the model’s output for individual predictions. 
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model to several existing XSS detection models as reported 

in previous studies, as shown in Table 1. This allows us to 

see how our approach fares in the bigger picture of XSS 

detection. 

 

 
Figure 7: SHAP Value Plot for Benign Samples.   

 

Table 1 is a comparison of our CatBoostClassifier model 

to the other models. We used Accuracy, MCC, ROC AUC, 

AP, Precision, Recall, and F1-score as metrics. The best 

results are in bold. 

As shown in Table 1, our CatBoostClassifier model beats 

all the other models in all the metrics. And our CatBoost 

model has perfect ROC AUC and Average Precision (AP), 

1.00. That’s the ideal score, better than the other models 

which don’t report ROC AUC and AP, but unlikely to reach 

1.00. Our model’s Matthews Correlation Coefficient (MCC) 

is also very high, 0.9974; that means it’s robust and 

balanced. This comparison shows our proposed method 

works well with hierarchical feature selection and 

CatBoostClassifier. 

 
Figure 8: Feature Importances for Malicious Samples.   

 

IV. CONCLUSION 

In conclusion, we have tackled the long-standing issue of 

Cross-Site Scripting (XSS) detection by introducing a new 

machine learning framework that combines hierarchical 

feature selection with CatBoostClassifier. Our method, 

using Spearman correlation-based feature selection to speed 

up and reduce dimensionality, together with the robust 

CatBoost algorithm, has achieved excellent results in 

detecting XSS attacks. The CatBoostClassifier model got 

Table 1: Performance Comparison with Existing XSS Detection Models. 

 

Model Authors Accuracy MCC ROC 

AUC 

AP Precision Recall F1-score 

DeepXSS [9] N/A N/A 0.98 N/A 99.5 0.979 98.7 

ADTree N/A N/A N/A N/A 93.8 0.936 93.6 

AdaBoost N/A N/A N/A N/A 94.1 0.939 93.9 

Linear [12] 96.32 N/A N/A N/A 98.33 94.53 N/A 

Polynomial 99.60 N/A N/A N/A 99.69 99.22 N/A 

k-NN 99.75 N/A N/A N/A 99.88 99.61 N/A 

RandomForest 99.50 N/A N/A N/A 99.84 99.15 N/A 

FNN-16 [13] 99.78 N/A N/A N/A 99.94 99.53 N/A 

FNN-34 99.88 N/A N/A N/A 99.98 99.75 N/A 

Decision tree [14] 98,81 N/A N/A N/A 99,19 93,70 95,90 

Naive Bayes 65,27 N/A N/A N/A 30,30 80,68 55,46 

Logistic regression 83,03 N/A N/A N/A 39,68 0,20 39 

SVM 71,37 N/A N/A N/A 27,82 43,21 48,06 

CatBoost Ours 99,88 99,74 1,00 1,00 99,88 99,88 99,88 
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amazing performance metrics: 99.88% accuracy, perfect 

ROC AUC and Average Precision 1.00, and Matthews 

Correlation Coefficient 0.9974, clearly outperforming the 

state-of-the-art XSS detection methods as shown in our 

comparison. This paper not only proves the effectiveness of 

gradient boosting methods, especially CatBoost, in 

cybersecurity but also sets a new standard for XSS 

detection. Feature and SHAP value analysis gives us more 

insights into the most important features for XSS 

vulnerabilities. Future work could be to test the model 

against evolving XSS attack vectors and in real-world 

deployment scenarios to make it more practical for web 

application security. 
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