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  Abstract — In today's world, the importance of cybersecurity 

for various systems is growing every year. The number of 

information security events generated by information security 

tools grows up with the development of the IT infrastructure. 

At the same time, the cyber threat landscape does not remain 

constant, and monitoring should take into account both already 

known attack indicators and those for which there are no 

signature rules in information security products of various 

classes yet. Detecting anomalies in large cybersecurity data 

streams is a complex task that, if properly addressed, can allow 

for timely response to atypical and previously unknown cyber 

threats. The possibilities of using of offline algorithms may be 

limited for a number of reasons related to the time of training 

and the frequency of retraining. Using stream learning 

algorithms for solving this task is capable of providing near-

real-time data processing. This article examines the results of 

ten algorithms from three Python stream machine-learning 

libraries on BETH dataset with cybersecurity events, which 

contains information about the creation, cloning, and 

destruction of operating system processes collected using eBPF. 

The ROC-AUC metric and the total processing time for 

processing with these algorithms are presented. Several 

combinations of features and the order of events have been 

considered. In conclusion, some notes are given about the most 

promising algorithms, and possible directions for future 

research are outlined. 

 
Keywords—Anomaly detection, unsupervised learning, 

stream learning, cybersecurity, eBPF, SIEM, UEBA, BETH 

dataset. 

 

I. INTRODUCTION 

Anomaly detection and outlier detection are well-known 

tasks for which methods of probability and statistics theory, 

machine and deep learning, and graph theory are used. 

Ensuring cybersecurity is a modern and complete challenge 

in a practical field where there are no universal recipes. New 

classes of products that increase protection from attackers 

appear periodically. At the same time, attackers are not 

standing still, and new threats, such as zero-day attacks, 

make it impossible to fully rely on signature detection tools 

to identify malicious behavior. 

As society becomes digital, the number of systems that 

need to be secured at an acceptable level increases. Data 

streams from information protection systems can reach 

hundreds of thousands and millions of events per second 

(EPS). In such conditions, it becomes impossible not to use 

automatic intelligent analysis of incoming data. 

 
Manuscript received March 6, 2025. 

E.O. Eremin is with RTU MIREA, Russia, Moscow 

(e-mail: e.o.eremin@gmail.com).  
 

The feature of systems that analyze security events is the 

need to minimize the time of detection of illegitimate 

events. From the point of view of information security 

monitoring, one of the key metrics of performance is the 

mean time to detect (MTTD). In fact, to minimize this 

metric, event analysis system must operate in near real-time 

mode. 

The most impressive results in detecting anomalies are 

achieved by methods [1], which can be challenging to 

implement in practice for processing large data streams in 

near real-time. 

This work considers the processing of the cybersecurity 

event stream of the Linux operating system kernel deployed 

in a cloud infrastructure. The analysis of such data streams 

makes it possible to solve in practice the task of monitoring 

the security of container orchestration systems in the cloud. 

Such events can be collected and analyzed by various types 

of systems, including Endpoint Detection and Response 

(EDR), Security Information and Event Management 

(SIEM), and User and Entity Behavioral Analytics (UEBA). 

The rest of this paper is organized as follows. Section II 

provides a brief review of relevant literature related to this 

work. Used dataset and algorithms presented in Section III. 

Methodology of evaluation experiments provided in Section 

IV. In Section V the results of experiments are listed and 

some explanations provided. Conclusion of article and 

possible future work presented in Section VI. 

II.  RELATED WORK 

When considering the task of unsupervised anomaly 

detection on cybersecurity data streams, it is possible to 

identify several relevant areas of work. 

First, there is work on the application of algorithms for 

detecting anomalies in data streams. An overview of these 

algorithms is provided in [2]. In [3], a scalable real-time 

system for streaming cybersecurity logs based on the use of 

the Spark framework and the MLlib machine-learning 

library is considered. In [4], a comparison of various 

methods for extracting features from a stream of data 

collected from network traffic analysis devices was 

conducted. In [5], the use of deep neural networks for 

insider threat detection in streaming data is discussed. 

Secondly, it is the works on the use of multidimensional 

data clustering algorithms in the context of the cybersecurity 

domain. A detailed analysis and review of the use of 

clustering algorithms in UEBA systems can be found in [6]. 

The third area of work can be identified as addressing the 

specific issue of anomaly detection within system logs. The 

work [7] presents the use of fine-tuned language models for 

solving the task of anomaly detection in log data. The article 
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[8] discusses the use of a fuzzy CNN autoencoder for this 

task, using the datasets HDFS1, BGL, and Villani. 

Finally, the detection of abnormal processes based on 

events generated by the extended Berkeley Packet Filter 

(eBPF) is discussed in the paper [9]. The BETH dataset is 

used in a number of papers, including [10], [11], [12] and 

[13]. In the original study that introduced the dataset [10], 

several non-streaming methods were chosen as baselines, 

including Isolation Forest, Robust Covariance, One-Class 

Support Vector Machine (SVM), and Variational 

Autoencoder with State Density Estimation. The best ROC-

AUC score for the test dataset was achieved by Isolation 

Forest, with a score of 0.850. In the work [11], the usage of 

graph neural networks with embeddings from transformers 

is proposed. The best results were achieved by the 

GraphSAGE-128 + IForest model trained on the T5-VAE 

embedding with ROC-AUC of 0.932 for SUS labels and 

0.951 for EVIL labels.  

Unlike the previously mentioned works, this study 

focuses on the use of streaming algorithms for detecting 

anomalies in the BETH dataset, which contains information 

about system processes. The main idea of the work is to test 

the hypothesis about the possibility of using such algorithms 

and to compare the results with those obtained using offline 

methods for anomaly detection. 

III. BACKGROUND 

A. eBPF 

 Extended Berkley Packet Filter is a technology for 

launching applications in the Linux kernel space. It is more 

secure than using the Linux kernel module mechanism. In 

recent years, the use of this technology has been growing 

due to its capabilities in terms of security, observability and 

tracing [14]. In particular, many companies use eBPF to 

monitor the security of Kubernetes containers. 

B. Unsupervised stream learning 

 In the context of the possibility of detecting anomalies in 

real time on a sufficiently large stream of events, the number 

of methods suitable for this task is limited. Supervised 

methods require the preliminary marking of data, which is 

very difficult to obtain in real time. At the same time, 

unsupervised methods can be divided into offline, semi-

online and online [2]. Offline methods are able to extract 

more information from the data, but are less resistant to 

changes in newly incoming data, such as shift, change in 

distribution, etc. The use of offline learning methods 

requires periodic full retraining of models, which can be a 

difficult engineering task in the case of large volumes of 

processed data streams. Semi-online and online methods 

allow for data changes to be taken into account and reduce 

the time spent on training, but they may be less effective in 

terms of accuracy when detecting anomalies. 

 In this work, ten algorithms of semi-online and online 

learning are used, the implementations of which are 

available in modern libraries for stream machine learning 

River [15], PySAD [16] and StreamAD [17]: 

   

1) Half-Space Tree – online version of isolated trees. In 

this work used implementation from River library; 

2) IForestASD. The idea of this algorithm is to use sliding 

windows of a predetermined size, within which the 

original isolation forest is applied and the anomaly 

score [18] is calculated for events within the window. In 

this work, the implementation from the PySAD library 

was used, which has no concept drift detection. The 

implementation is based on pod.models.forest from the 

PyOD library [19]; 

3) Incremental Local Outlier Factor.  This is online version 

of the Local Outlier Factor (LOF) [20]. Main idea of 

this method is to identify outliers based on density of 

local neighbors. Implementation from River library  

was used; 

4) KitNet. This algorithm is based on the idea of using 

small autoencoders trained to imitate (reconstruct) 

patterns in incoming data, whose performance improves 

during operation. The main limitation of this method is 

that it needs to be trained on normal data [21]; 

5) LODA. Ensemble of weak anomaly detectors – one-

dimensional histograms for approximation the 

probability density of input data [22]. In this work used 

implementation from StreamAD library; 

6) Stochastic implementation of One-Class Support Vector 

Machine from River library, not exactly matched with 

its batch formulation; 

7) Robust Random Cut Forest – dynamically maintained 

Robust Random Cut Trees. It differs from an isolated 

forest in that the dimension to cut has chosen uniformly 

at random [23]. In this work used implementation from 

StreamAD library; 

8) RS-Hash – Lightweight subspace outlier algorithm 

based on randomized hashing to score data points and 

has subspace interpretation [24]. In this work used 

implementation from StreamAD library; 

9) Storm (Exact-STORM) – method with sliding windows 

and distance-based anomaly scores [25]. In this work 

used implementation from PySAD library; 

10) xStream – Density-based ensemble method that can 

work on row streams and feature-evolving streams [26]. 

In this work used implementation from StreamAD 

library.  

C. BETH Cybersecurity Dataset 

This dataset was made publicly available in 2021. It 

contains events from eBPF-based sensors that log the 

creation, cloning, and termination of processes, as well as 

network traffic events, mainly DNS requests. In this work, 

as in several others that use this dataset, only process 

monitoring events are used [11] – [13]. Each event contains 

14 raw features, 9 of which are numeric. Not all raw features 

are used in this work; in particular, arguments are not used 

due to the structure, which is difficult to process in a stream. 

 Train sample contains events from 8 hosts, validation 

sample contains events from 4 hosts and testing sample 

contains events from one host. Because of this we consider 

one host-independent model. 

  The training and validation datasets do not include events 

that occurred during an attack. Events in the dataset are 

marked with two tags – EVIL and SUS. EVIL – events of 

processes that are clearly related to an attack. Such events 

are only in the test sample. SUS – non-typical events for  
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Fig. 1. Events order in train split of BETH dataset. Left column – original order. Right column – after sorting by timestamp and host 

processes that are not unequivocally malicious, but still 

quire the attention from a security analyst. In this work, tags 

are only used to calculate the final metrics. 

IV. METHODOLOGY 

A. Data Preprocessing 

As in the original article presenting the BETH dataset, 

additional features are used: 

• processId_nonOS — binary flag that determines 

whether the process is spawned by the user or the 

OS; 

• parentProcessId_nonOS — the same as previous 

flag, but for parent process; 

• userId_nonOS — binary flag that determines 

whether the account is a user account or a system 

account; 

• returnValue_error — process finished with or 

without error. 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025 

 

 

110 

 

Unlike the code that comes with the original article, 

attributes are added to existing event fields. The event 

names of the parent process are enriched where possible. 

Process arguments are not used. The string values are 

encoded in a stream mode using the Ordinal Encoder from 

RiverML library. 

Network logs (DNS) are not utilized in this work. 

For the OCSVM model, StandardScaler is used according 

to the recommendations in the RiverML library 

documentation, and MinMaxScaler is used for HSTree. 

Since the timestamp field contains the number of seconds 

since the OS was loaded, it is not possible to reliably 

determine the chronological order of events from different 

OS sessions. However, in the case of streaming training, the 

order of events at the input of the model can affect its 

predictions. Therefore, in the train data, the events were also 

sorted by timestamp and hostname. The charts of the 

timestamp dependencies on the event number in the sample 

are shown in Figure 1. The charts of the events in their 

original order are located on the left, and the sorted charts 

are on the right. All of the models considered process the 

data in both orders for subsequent comparison. 

B. Evaluation and metrics 

 All experiments were conducted on Ubuntu 22.04 LTS 

equipped with Intel® Core™ i7-7700 at 3.6 GHz and 48 GB 

DDR4 memory. For programming, Python 3.11 was used. 

The training and testing samples were used for training and 

calculating anomaly scores. At the same time, the evaluation 

metrics were calculated only for the testing sample, 

separately for the EVIL and SUS labels. The validation 

sample was not used in the experiments. All models were 

initialized using the default hyperparameters provided by 

their implementation in the respective libraries. The 

experiments were conducted for various combinations of 

features and data order: 

• original or sorted order by hostname and 

timestamp; 

• enriched event by parent process name or not. 

 Despite the fact that not all the models discussed are 

stochastic, each model is evaluated using five different 

random seeds and the results are averaged. 

 The metrics chosen are ROC-AUC, as in the original 

work, and the total processing time of the entire dataset by 

the model. 

 Although there are both opinions for using ROC-AUC on 

unbalanced datasets (as in the case of BETH) and against, 

other binary classification metrics such as Accuracy, 

Precision, Recall and F1 are not used in this work. This is 

because the ROC curve allows you to choose a threshold 

that meets a specific balance between True Positive Rate 

(TPR) and False Positive Rate (FPR). The optimal TPR and 

FPR ratio can be chosen from the ROC curve; however, in 

the context of analyzing suspicions of information security 

incidents with a specific intelligent tool, minimizing false 

positives or maximizing detected anomalies may be of 

greater importance. Accordingly, depending on the selected 

balance of TPR and FPR, binary classification metrics will 

take different values, which is why they are not presented. 

 The ROC-AUC calculation is performed after processing 

the entire test sample using roc_auc_score from the scikit-

learn library [27]. The River library has the ability to 

calculate metrics on the fly, but this feature is not used 

because it is more error-prone than calculating metrics after 

the fact. 

 The total processing time is calculated by adding up the 

processing times for each event in the training and testing 

splits. Fit and score are then performed on each event. 

Preliminary processing of the additional feature and 

enrichment of the parent process is performed separately and 

not included in the measurements. This is related to the 

desire to provide convenience for repeated runs, so that we 

can use the feature sets that have already been prepared for 

the training and testing samples. 

V. RESULTS AND DISCUSSION 

The numerical results of the experiments are presented in 

Table 1 for the anomalies marked as EVIL and in Table 2 

for the anomalies marked as SUS. 

For HSTree, LODA, and RRCF models, ROC-AUC 

values were less than 0.5. Inverting anomaly scores from 

these methods gives ROC-AUC values between 

approximately 0.8 and 1.0. This means that these models 

confuse anomalies and typical events vice versa. HSTree 

confuses it across different seeds, which indicates the poor 

capabilities of this model in this particular case. The best 

results for ROC-AUC belong to KitNet, ILOF, and RS-

Hash. 

The fastest processing speed for the entire dataset was 

achieved by OCSVM, KitNet, HSTree, and ILOF, with 

processing times of more than 2,500 EPS.   

 It can be seen that, on the used dataset, some anomaly 

detection algorithms outperform the results presented in the 

ROC-AUC metric in the works of [10] - [12]. In this case, 

only basic feature engineering and default hyperparameter 

values of all discussed models are used. In the paper [13], 

supervised methods were used and the results on ROC-AUC 

were not presented, so a comparison could not be made. 

 All algorithms, except Storm, were sensitive to the order 

of events in which incremental training takes place. 

Unfortunately, there is not a clear connection between the 

quality of the detection and the results. Therefore, for the 

KitNet algorithm, sorting the training sample by timestamp 

improves the result when detecting anomalies labeled as 

EVIL, but it leads to a decrease in the performance metric 

for events labeled as SUS. 

 Enrichment of the parent process name with subsequent 

processing by the Ordinal Encoder stream for some 

algorithms worsens the results, and for some it improves, 

and for different labels (EVIL and SUS) the situation with 

the same algorithm can be the opposite (for example, the 

same KitNet). 

 The best ROC-AUC metric in most cases was the KitNet 

algorithm, which is due to: 

1) Absence of events with the EVIL label in the training 

sample; 

2) Small number of events with the SUS label in the 

training sample (0.02% of the total number). 

«Contamination» of the training sample with SUS and 

EVIL events (which is what we can observe in real practice 

of monitoring) would lead to a decrease in the result shown. 

All of the above observations allow us to conclude that 

even the most promising of the algorithms reviewed, despite 

their high discriminatory ability, are strongly dependent on 
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the processed data and their results should be evaluated by a security analyst. 

 

TABLE I 

MODELS PERFORMANCE ON EVIL LABELS 

Model Sorted Enriched Time, seconds ROC-AUC 

HSTree 

no 
no 215.254±9.094 0.216±0.412 

yes 212.872±15.805 0.052±0.007 

yes 
no 209.177±7.672 0.215±0.422 

yes 216.206±6.950 0.042±0.012 

IForestASD 

no 
no 1865.587±11.517 0.710±0.013 

yes 1872.442±12.069 0.676±0.009 

yes 
no 1860.352±10.495 0.710±0.014 

yes 1870.231±12.328 0.719±0.015 

ILOF 

no 
no 374.580±2.544 0.880±0.000 

yes 384.471±3.058 0.978±0.000 

yes 
no 242.972±1.499 0.712±0.000 

yes 384.452±3.849 0.883±0.000 

KitNet 

no 
no 176.138±0.503 0.933±0.000 

yes 274.922±2.356 0.933±0.000 

yes 
no 172.029±0.928 0.994±0.000 

yes 224.652±1.549 0.982±0.000 

LODA 

no 
no 816.395±5.402 0.097±0.000 

yes 821.759±5.795 0.149±0.001 

yes 
no 817.694±5.824 0.097±0.000 

yes 818.895±5.378 0.140±0.001 

OCSVM 

no 
no 53.823±0.665 0.659±0.000 

yes 52.928±0.695 0.676±0.000 

yes 
no 55.409±0.486 0.711±0.000 

yes 50.643±0.377 0.572±0.000 

RRCF 

no 
no 1742.404±75.728 0.047±0.001 

yes 1573.353±11.010 0.044±0.000 

yes 
no 1452.139±51.779 0.047±0.002 

yes 1408.911±9.375 0.045±0.001 

RS-Hash 

no 
no 415.451±4.079 0.967±0.001 

yes 437.649±0.792 0.955±0.000 

yes 
no 417.394±3.099 0.966±0.001 

yes 438.476±1.142 0.955±0.001 

Storm 

no 
no 3349.882±102.540 0.932±0.000 

yes 3313.516±83.078 0.931±0.000 

yes 
no 3362.405±184.883 0.932±0.000 

yes 3297.809±78.910 0.931±0.000 

xStream 

no 
no 680.401±3.902 0.917±0.009 

yes 701.267±2.618 0.918±0.003 

yes 
no 681.296±3.363 0.916±0.010 

yes 702.592±2.585 0.917±0.003 

   

ROC-AUC less than 0.5 means that model confuses anomalous and benign events. Best values highlighted by bold font. 

 

VI. CONCLUSION AND FUTURE WORK 

Some of discussed incremental models (like KitNet, 

ILOF, RS-Hash, xStream) can be used for anomaly 

detection in cybersecurity data streams “as-is”, i.e. with 

minimal feature engineering, default hyper-parameters and 

high EPS processing rate. Detections from these models can 

be used to assist security analysts in their operational 

activities. Advanced feature engineering and tuning hyper-

parameters may give better results.  

Future directions of work: 

1) Reviewing performance of batch-based learning models 

for this task. Batch learning can be more difficult in 

engineering meaning while using in real product 

environment, but can find more complex dependencies 

in data; 

2) Advanced feature engineering, such as for process 

arguments, can be done using arrays. Strings and lists of 

strings can be represented as embedding vectors derived 

from a domain-specific language model. Methods of 

unsupervised feature selection on streaming data also 
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could be used; 

3) Entity-based models (for certain host, certain process 

name, etc.)  can be interesting for using in particular 

infrastructure; 

4) Evaluating various models on other cybersecurity 

streaming data, e.g. Sysmon events, etc.; 

5) Evaluating more deep learning models, including graph 

neural networks. 

 

TABLE II 

MODELS PERFORMANCE ON SUS LABELS 

Model Sorted Enriched Time, seconds ROC-AUC 

HSTree 

no 
no 215.254±9.094 0.235±0.390 

yes 212.872±15.805 0.081±0.005 

yes 
no 209.177±7.672 0.222±0.391 

yes 216.206±6.950 0.083±0.014 

IForestASD 

no 
no 1865.587±11.517 0.671±0.016 

yes 1872.442±12.069 0.678±0.006 

yes 
no 1860.352±10.495 0.679±0.016 

yes 1870.231±12.328 0.706±0.019 

ILOF 

no 
no 374.580±2.544 0.832±0.000 

yes 384.471±3.058 0.950±0.000 

yes 
no 242.972±1.499 0.662±0.000 

yes 384.452±3.849 0.771±0.000 

KitNet 

no 
no 176.138±0.503 0.990±0.000 

yes 274.922±2.356 0.983±0.000 

yes 
no 172.029±0.928 0.976±0.000 

yes 224.652±1.549 0.953±0.000 

LODA 

no 
no 816.395±5.402 0.138±0.001 

yes 821.759±5.795 0.188±0.001 

yes 
no 817.694±5.824 0.138±0.001 

yes 818.895±5.378 0.170±0.001 

OCSVM 

no 
no 53.823±0.665 0.743±0.000 

yes 52.928±0.695 0.766±0.000 

yes 
no 55.409±0.486 0.765±0.000 

yes 50.643±0.377 0.731±0.000 

RRCF 

no 
no 1742.404±75.728 0.093±0.001 

yes 1573.353±11.010 0.092±0.001 

yes 
no 1452.139±51.779 0.094±0.002 

yes 1408.911±9.375 0.091±0.001 

RS-Hash 

no 
no 415.451±4.079 0.938±0.002 

yes 437.649±0.792 0.927±0.001 

yes 
no 417.394±3.099 0.937±0.003 

yes 438.476±1.142 0.927±0.002 

Storm 

no 
no 3349.882±102.540 0.914±0.000 

yes 3313.516±83.078 0.913±0.000 

yes 
no 3362.405±184.883 0.914±0.000 

yes 3297.809±78.910 0.913±0.000 

xStream 

no 
no 680.401±3.902 0.882±0.011 

yes 701.267±2.618 0.881±0.007 

yes 
no 681.296±3.363 0.880±0.012 

yes 702.592±2.585 0.881±0.007 

 
ROC-AUC less than 0.5 means that model confuses anomalous and benign events. Best values highlighted by bold font. 

DATA AVAILABILITY 

Source code for reproducing experiments is available at 

https://github.com/ev-er/unsupervised_stream_ad_beth  
 

BETH dataset is available at 

https://www.kaggle.com/datasets/katehighnam/beth-dataset 
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