
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

107

 Abstract — In today's world, the importance of cybersecurity

for various systems is growing every year. The number of

information security events generated by information security

tools grows up with the development of the IT infrastructure.

At the same time, the cyber threat landscape does not remain

constant, and monitoring should take into account both already

known attack indicators and those for which there are no

signature rules in information security products of various

classes yet. Detecting anomalies in large cybersecurity data

streams is a complex task that, if properly addressed, can allow

for timely response to atypical and previously unknown cyber

threats. The possibilities of using of offline algorithms may be

limited for a number of reasons related to the time of training

and the frequency of retraining. Using stream learning

algorithms for solving this task is capable of providing near-

real-time data processing. This article examines the results of

ten algorithms from three Python stream machine-learning

libraries on BETH dataset with cybersecurity events, which

contains information about the creation, cloning, and

destruction of operating system processes collected using eBPF.

The ROC-AUC metric and the total processing time for

processing with these algorithms are presented. Several

combinations of features and the order of events have been

considered. In conclusion, some notes are given about the most

promising algorithms, and possible directions for future

research are outlined.

Keywords—Anomaly detection, unsupervised learning,

stream learning, cybersecurity, eBPF, SIEM, UEBA, BETH

dataset.

I. INTRODUCTION

Anomaly detection and outlier detection are well-known

tasks for which methods of probability and statistics theory,

machine and deep learning, and graph theory are used.

Ensuring cybersecurity is a modern and complete challenge

in a practical field where there are no universal recipes. New

classes of products that increase protection from attackers

appear periodically. At the same time, attackers are not

standing still, and new threats, such as zero-day attacks,

make it impossible to fully rely on signature detection tools

to identify malicious behavior.

As society becomes digital, the number of systems that

need to be secured at an acceptable level increases. Data

streams from information protection systems can reach

hundreds of thousands and millions of events per second

(EPS). In such conditions, it becomes impossible not to use

automatic intelligent analysis of incoming data.

Manuscript received March 6, 2025.

E.O. Eremin is with RTU MIREA, Russia, Moscow

(e-mail: e.o.eremin@gmail.com).

The feature of systems that analyze security events is the

need to minimize the time of detection of illegitimate

events. From the point of view of information security

monitoring, one of the key metrics of performance is the

mean time to detect (MTTD). In fact, to minimize this

metric, event analysis system must operate in near real-time

mode.

The most impressive results in detecting anomalies are

achieved by methods [1], which can be challenging to

implement in practice for processing large data streams in

near real-time.

This work considers the processing of the cybersecurity

event stream of the Linux operating system kernel deployed

in a cloud infrastructure. The analysis of such data streams

makes it possible to solve in practice the task of monitoring

the security of container orchestration systems in the cloud.

Such events can be collected and analyzed by various types

of systems, including Endpoint Detection and Response

(EDR), Security Information and Event Management

(SIEM), and User and Entity Behavioral Analytics (UEBA).

The rest of this paper is organized as follows. Section II

provides a brief review of relevant literature related to this

work. Used dataset and algorithms presented in Section III.

Methodology of evaluation experiments provided in Section

IV. In Section V the results of experiments are listed and

some explanations provided. Conclusion of article and

possible future work presented in Section VI.

II. RELATED WORK

When considering the task of unsupervised anomaly

detection on cybersecurity data streams, it is possible to

identify several relevant areas of work.

First, there is work on the application of algorithms for

detecting anomalies in data streams. An overview of these

algorithms is provided in [2]. In [3], a scalable real-time

system for streaming cybersecurity logs based on the use of

the Spark framework and the MLlib machine-learning

library is considered. In [4], a comparison of various

methods for extracting features from a stream of data

collected from network traffic analysis devices was

conducted. In [5], the use of deep neural networks for

insider threat detection in streaming data is discussed.

Secondly, it is the works on the use of multidimensional

data clustering algorithms in the context of the cybersecurity

domain. A detailed analysis and review of the use of

clustering algorithms in UEBA systems can be found in [6].

The third area of work can be identified as addressing the

specific issue of anomaly detection within system logs. The

work [7] presents the use of fine-tuned language models for

solving the task of anomaly detection in log data. The article

Unsupervised anomaly detection on

cybersecurity data streams: a case with BETH

dataset
Evgeniy Eremin

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

108

[8] discusses the use of a fuzzy CNN autoencoder for this

task, using the datasets HDFS1, BGL, and Villani.

Finally, the detection of abnormal processes based on

events generated by the extended Berkeley Packet Filter

(eBPF) is discussed in the paper [9]. The BETH dataset is

used in a number of papers, including [10], [11], [12] and

[13]. In the original study that introduced the dataset [10],

several non-streaming methods were chosen as baselines,

including Isolation Forest, Robust Covariance, One-Class

Support Vector Machine (SVM), and Variational

Autoencoder with State Density Estimation. The best ROC-

AUC score for the test dataset was achieved by Isolation

Forest, with a score of 0.850. In the work [11], the usage of

graph neural networks with embeddings from transformers

is proposed. The best results were achieved by the

GraphSAGE-128 + IForest model trained on the T5-VAE

embedding with ROC-AUC of 0.932 for SUS labels and

0.951 for EVIL labels.

Unlike the previously mentioned works, this study

focuses on the use of streaming algorithms for detecting

anomalies in the BETH dataset, which contains information

about system processes. The main idea of the work is to test

the hypothesis about the possibility of using such algorithms

and to compare the results with those obtained using offline

methods for anomaly detection.

III. BACKGROUND

A. eBPF

 Extended Berkley Packet Filter is a technology for

launching applications in the Linux kernel space. It is more

secure than using the Linux kernel module mechanism. In

recent years, the use of this technology has been growing

due to its capabilities in terms of security, observability and

tracing [14]. In particular, many companies use eBPF to

monitor the security of Kubernetes containers.

B. Unsupervised stream learning

 In the context of the possibility of detecting anomalies in

real time on a sufficiently large stream of events, the number

of methods suitable for this task is limited. Supervised

methods require the preliminary marking of data, which is

very difficult to obtain in real time. At the same time,

unsupervised methods can be divided into offline, semi-

online and online [2]. Offline methods are able to extract

more information from the data, but are less resistant to

changes in newly incoming data, such as shift, change in

distribution, etc. The use of offline learning methods

requires periodic full retraining of models, which can be a

difficult engineering task in the case of large volumes of

processed data streams. Semi-online and online methods

allow for data changes to be taken into account and reduce

the time spent on training, but they may be less effective in

terms of accuracy when detecting anomalies.

 In this work, ten algorithms of semi-online and online

learning are used, the implementations of which are

available in modern libraries for stream machine learning

River [15], PySAD [16] and StreamAD [17]:

1) Half-Space Tree – online version of isolated trees. In

this work used implementation from River library;

2) IForestASD. The idea of this algorithm is to use sliding

windows of a predetermined size, within which the

original isolation forest is applied and the anomaly

score [18] is calculated for events within the window. In

this work, the implementation from the PySAD library

was used, which has no concept drift detection. The

implementation is based on pod.models.forest from the

PyOD library [19];

3) Incremental Local Outlier Factor. This is online version

of the Local Outlier Factor (LOF) [20]. Main idea of

this method is to identify outliers based on density of

local neighbors. Implementation from River library

was used;

4) KitNet. This algorithm is based on the idea of using

small autoencoders trained to imitate (reconstruct)

patterns in incoming data, whose performance improves

during operation. The main limitation of this method is

that it needs to be trained on normal data [21];

5) LODA. Ensemble of weak anomaly detectors – one-

dimensional histograms for approximation the

probability density of input data [22]. In this work used

implementation from StreamAD library;

6) Stochastic implementation of One-Class Support Vector

Machine from River library, not exactly matched with

its batch formulation;

7) Robust Random Cut Forest – dynamically maintained

Robust Random Cut Trees. It differs from an isolated

forest in that the dimension to cut has chosen uniformly

at random [23]. In this work used implementation from

StreamAD library;

8) RS-Hash – Lightweight subspace outlier algorithm

based on randomized hashing to score data points and

has subspace interpretation [24]. In this work used

implementation from StreamAD library;

9) Storm (Exact-STORM) – method with sliding windows

and distance-based anomaly scores [25]. In this work

used implementation from PySAD library;

10) xStream – Density-based ensemble method that can

work on row streams and feature-evolving streams [26].

In this work used implementation from StreamAD

library.

C. BETH Cybersecurity Dataset

This dataset was made publicly available in 2021. It

contains events from eBPF-based sensors that log the

creation, cloning, and termination of processes, as well as

network traffic events, mainly DNS requests. In this work,

as in several others that use this dataset, only process

monitoring events are used [11] – [13]. Each event contains

14 raw features, 9 of which are numeric. Not all raw features

are used in this work; in particular, arguments are not used

due to the structure, which is difficult to process in a stream.

 Train sample contains events from 8 hosts, validation

sample contains events from 4 hosts and testing sample

contains events from one host. Because of this we consider

one host-independent model.

 The training and validation datasets do not include events

that occurred during an attack. Events in the dataset are

marked with two tags – EVIL and SUS. EVIL – events of

processes that are clearly related to an attack. Such events

are only in the test sample. SUS – non-typical events for

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

109

Fig. 1. Events order in train split of BETH dataset. Left column – original order. Right column – after sorting by timestamp and host

processes that are not unequivocally malicious, but still

quire the attention from a security analyst. In this work, tags

are only used to calculate the final metrics.

IV. METHODOLOGY

A. Data Preprocessing

As in the original article presenting the BETH dataset,

additional features are used:

• processId_nonOS — binary flag that determines

whether the process is spawned by the user or the

OS;

• parentProcessId_nonOS — the same as previous

flag, but for parent process;

• userId_nonOS — binary flag that determines

whether the account is a user account or a system

account;

• returnValue_error — process finished with or

without error.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

110

Unlike the code that comes with the original article,

attributes are added to existing event fields. The event

names of the parent process are enriched where possible.

Process arguments are not used. The string values are

encoded in a stream mode using the Ordinal Encoder from

RiverML library.

Network logs (DNS) are not utilized in this work.

For the OCSVM model, StandardScaler is used according

to the recommendations in the RiverML library

documentation, and MinMaxScaler is used for HSTree.

Since the timestamp field contains the number of seconds

since the OS was loaded, it is not possible to reliably

determine the chronological order of events from different

OS sessions. However, in the case of streaming training, the

order of events at the input of the model can affect its

predictions. Therefore, in the train data, the events were also

sorted by timestamp and hostname. The charts of the

timestamp dependencies on the event number in the sample

are shown in Figure 1. The charts of the events in their

original order are located on the left, and the sorted charts

are on the right. All of the models considered process the

data in both orders for subsequent comparison.

B. Evaluation and metrics

 All experiments were conducted on Ubuntu 22.04 LTS

equipped with Intel® Core™ i7-7700 at 3.6 GHz and 48 GB

DDR4 memory. For programming, Python 3.11 was used.

The training and testing samples were used for training and

calculating anomaly scores. At the same time, the evaluation

metrics were calculated only for the testing sample,

separately for the EVIL and SUS labels. The validation

sample was not used in the experiments. All models were

initialized using the default hyperparameters provided by

their implementation in the respective libraries. The

experiments were conducted for various combinations of

features and data order:

• original or sorted order by hostname and

timestamp;

• enriched event by parent process name or not.

 Despite the fact that not all the models discussed are

stochastic, each model is evaluated using five different

random seeds and the results are averaged.

 The metrics chosen are ROC-AUC, as in the original

work, and the total processing time of the entire dataset by

the model.

 Although there are both opinions for using ROC-AUC on

unbalanced datasets (as in the case of BETH) and against,

other binary classification metrics such as Accuracy,

Precision, Recall and F1 are not used in this work. This is

because the ROC curve allows you to choose a threshold

that meets a specific balance between True Positive Rate

(TPR) and False Positive Rate (FPR). The optimal TPR and

FPR ratio can be chosen from the ROC curve; however, in

the context of analyzing suspicions of information security

incidents with a specific intelligent tool, minimizing false

positives or maximizing detected anomalies may be of

greater importance. Accordingly, depending on the selected

balance of TPR and FPR, binary classification metrics will

take different values, which is why they are not presented.

 The ROC-AUC calculation is performed after processing

the entire test sample using roc_auc_score from the scikit-

learn library [27]. The River library has the ability to

calculate metrics on the fly, but this feature is not used

because it is more error-prone than calculating metrics after

the fact.

 The total processing time is calculated by adding up the

processing times for each event in the training and testing

splits. Fit and score are then performed on each event.

Preliminary processing of the additional feature and

enrichment of the parent process is performed separately and

not included in the measurements. This is related to the

desire to provide convenience for repeated runs, so that we

can use the feature sets that have already been prepared for

the training and testing samples.

V. RESULTS AND DISCUSSION

The numerical results of the experiments are presented in

Table 1 for the anomalies marked as EVIL and in Table 2

for the anomalies marked as SUS.

For HSTree, LODA, and RRCF models, ROC-AUC

values were less than 0.5. Inverting anomaly scores from

these methods gives ROC-AUC values between

approximately 0.8 and 1.0. This means that these models

confuse anomalies and typical events vice versa. HSTree

confuses it across different seeds, which indicates the poor

capabilities of this model in this particular case. The best

results for ROC-AUC belong to KitNet, ILOF, and RS-

Hash.

The fastest processing speed for the entire dataset was

achieved by OCSVM, KitNet, HSTree, and ILOF, with

processing times of more than 2,500 EPS.

 It can be seen that, on the used dataset, some anomaly

detection algorithms outperform the results presented in the

ROC-AUC metric in the works of [10] - [12]. In this case,

only basic feature engineering and default hyperparameter

values of all discussed models are used. In the paper [13],

supervised methods were used and the results on ROC-AUC

were not presented, so a comparison could not be made.

 All algorithms, except Storm, were sensitive to the order

of events in which incremental training takes place.

Unfortunately, there is not a clear connection between the

quality of the detection and the results. Therefore, for the

KitNet algorithm, sorting the training sample by timestamp

improves the result when detecting anomalies labeled as

EVIL, but it leads to a decrease in the performance metric

for events labeled as SUS.

 Enrichment of the parent process name with subsequent

processing by the Ordinal Encoder stream for some

algorithms worsens the results, and for some it improves,

and for different labels (EVIL and SUS) the situation with

the same algorithm can be the opposite (for example, the

same KitNet).

 The best ROC-AUC metric in most cases was the KitNet

algorithm, which is due to:

1) Absence of events with the EVIL label in the training

sample;

2) Small number of events with the SUS label in the

training sample (0.02% of the total number).

«Contamination» of the training sample with SUS and

EVIL events (which is what we can observe in real practice

of monitoring) would lead to a decrease in the result shown.

All of the above observations allow us to conclude that

even the most promising of the algorithms reviewed, despite

their high discriminatory ability, are strongly dependent on

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

111

the processed data and their results should be evaluated by a security analyst.

TABLE I

MODELS PERFORMANCE ON EVIL LABELS

Model Sorted Enriched Time, seconds ROC-AUC

HSTree

no
no 215.254±9.094 0.216±0.412

yes 212.872±15.805 0.052±0.007

yes
no 209.177±7.672 0.215±0.422

yes 216.206±6.950 0.042±0.012

IForestASD

no
no 1865.587±11.517 0.710±0.013

yes 1872.442±12.069 0.676±0.009

yes
no 1860.352±10.495 0.710±0.014

yes 1870.231±12.328 0.719±0.015

ILOF

no
no 374.580±2.544 0.880±0.000

yes 384.471±3.058 0.978±0.000

yes
no 242.972±1.499 0.712±0.000

yes 384.452±3.849 0.883±0.000

KitNet

no
no 176.138±0.503 0.933±0.000

yes 274.922±2.356 0.933±0.000

yes
no 172.029±0.928 0.994±0.000

yes 224.652±1.549 0.982±0.000

LODA

no
no 816.395±5.402 0.097±0.000

yes 821.759±5.795 0.149±0.001

yes
no 817.694±5.824 0.097±0.000

yes 818.895±5.378 0.140±0.001

OCSVM

no
no 53.823±0.665 0.659±0.000

yes 52.928±0.695 0.676±0.000

yes
no 55.409±0.486 0.711±0.000

yes 50.643±0.377 0.572±0.000

RRCF

no
no 1742.404±75.728 0.047±0.001

yes 1573.353±11.010 0.044±0.000

yes
no 1452.139±51.779 0.047±0.002

yes 1408.911±9.375 0.045±0.001

RS-Hash

no
no 415.451±4.079 0.967±0.001

yes 437.649±0.792 0.955±0.000

yes
no 417.394±3.099 0.966±0.001

yes 438.476±1.142 0.955±0.001

Storm

no
no 3349.882±102.540 0.932±0.000

yes 3313.516±83.078 0.931±0.000

yes
no 3362.405±184.883 0.932±0.000

yes 3297.809±78.910 0.931±0.000

xStream

no
no 680.401±3.902 0.917±0.009

yes 701.267±2.618 0.918±0.003

yes
no 681.296±3.363 0.916±0.010

yes 702.592±2.585 0.917±0.003

ROC-AUC less than 0.5 means that model confuses anomalous and benign events. Best values highlighted by bold font.

VI. CONCLUSION AND FUTURE WORK

Some of discussed incremental models (like KitNet,

ILOF, RS-Hash, xStream) can be used for anomaly

detection in cybersecurity data streams “as-is”, i.e. with

minimal feature engineering, default hyper-parameters and

high EPS processing rate. Detections from these models can

be used to assist security analysts in their operational

activities. Advanced feature engineering and tuning hyper-

parameters may give better results.

Future directions of work:

1) Reviewing performance of batch-based learning models

for this task. Batch learning can be more difficult in

engineering meaning while using in real product

environment, but can find more complex dependencies

in data;

2) Advanced feature engineering, such as for process

arguments, can be done using arrays. Strings and lists of

strings can be represented as embedding vectors derived

from a domain-specific language model. Methods of

unsupervised feature selection on streaming data also

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

112

could be used;

3) Entity-based models (for certain host, certain process

name, etc.) can be interesting for using in particular

infrastructure;

4) Evaluating various models on other cybersecurity

streaming data, e.g. Sysmon events, etc.;

5) Evaluating more deep learning models, including graph

neural networks.

TABLE II

MODELS PERFORMANCE ON SUS LABELS

Model Sorted Enriched Time, seconds ROC-AUC

HSTree

no
no 215.254±9.094 0.235±0.390

yes 212.872±15.805 0.081±0.005

yes
no 209.177±7.672 0.222±0.391

yes 216.206±6.950 0.083±0.014

IForestASD

no
no 1865.587±11.517 0.671±0.016

yes 1872.442±12.069 0.678±0.006

yes
no 1860.352±10.495 0.679±0.016

yes 1870.231±12.328 0.706±0.019

ILOF

no
no 374.580±2.544 0.832±0.000

yes 384.471±3.058 0.950±0.000

yes
no 242.972±1.499 0.662±0.000

yes 384.452±3.849 0.771±0.000

KitNet

no
no 176.138±0.503 0.990±0.000

yes 274.922±2.356 0.983±0.000

yes
no 172.029±0.928 0.976±0.000

yes 224.652±1.549 0.953±0.000

LODA

no
no 816.395±5.402 0.138±0.001

yes 821.759±5.795 0.188±0.001

yes
no 817.694±5.824 0.138±0.001

yes 818.895±5.378 0.170±0.001

OCSVM

no
no 53.823±0.665 0.743±0.000

yes 52.928±0.695 0.766±0.000

yes
no 55.409±0.486 0.765±0.000

yes 50.643±0.377 0.731±0.000

RRCF

no
no 1742.404±75.728 0.093±0.001

yes 1573.353±11.010 0.092±0.001

yes
no 1452.139±51.779 0.094±0.002

yes 1408.911±9.375 0.091±0.001

RS-Hash

no
no 415.451±4.079 0.938±0.002

yes 437.649±0.792 0.927±0.001

yes
no 417.394±3.099 0.937±0.003

yes 438.476±1.142 0.927±0.002

Storm

no
no 3349.882±102.540 0.914±0.000

yes 3313.516±83.078 0.913±0.000

yes
no 3362.405±184.883 0.914±0.000

yes 3297.809±78.910 0.913±0.000

xStream

no
no 680.401±3.902 0.882±0.011

yes 701.267±2.618 0.881±0.007

yes
no 681.296±3.363 0.880±0.012

yes 702.592±2.585 0.881±0.007

ROC-AUC less than 0.5 means that model confuses anomalous and benign events. Best values highlighted by bold font.

DATA AVAILABILITY

Source code for reproducing experiments is available at

https://github.com/ev-er/unsupervised_stream_ad_beth

BETH dataset is available at

https://www.kaggle.com/datasets/katehighnam/beth-dataset

REFERENCES

[1] Bouman, R., Bukhsh, Z., & Heskes, T. (2024).

Unsupervised anomaly detection algorithms on real-

https://github.com/ev-er/unsupervised_stream_ad_beth
https://www.kaggle.com/datasets/katehighnam/beth-dataset

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 6, 2025

113

world data: how many do we need?. Journal of Machine

Learning Research, 25(105), 1-34.

[2] Lu, T., Wang, L., & Zhao, X. (2023). Review of

Anomaly Detection Algorithms for Data Streams.

Applied Sciences, 13(10), 6353.

[3] Sánchez-Zas, C., Larriva-Novo, X., Villagrá, V. A.,

Rodrigo, M. S., & Moreno, J. I. (2022). Design and

Evaluation of Unsupervised Machine Learning Models

for Anomaly Detection in Streaming Cybersecurity

Logs. Mathematics, 10(21), 4043.

[4] Heigl, M., Weigelt, E., Fiala, D., & Schramm, M.

(2021). Unsupervised Feature Selection for Outlier

Detection on Streaming Data to Enhance Network

Security. Applied Sciences, 11(24), 12073.

[5] Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., &

Robinson, S. (2017, February). Deep Learning for

Unsupervised Insider Threat Detection in Structured

Cybersecurity Data Streams. In AAAI Workshops (pp.

224-231).

[6] Artioli, P., Maci, A., & Magrì, A. (2024). A

comprehensive investigation of clustering algorithms

for User and Entity Behavior Analytics. Frontiers in big

Data, 7, 1375818.

[7] Almodovar, C., Sabrina, F., Karimi, S., & Azad, S.

(2024). LogFiT: Log anomaly detection using fine-

tuned language models. IEEE Transactions on Network

and Service Management, 21(2), 1715-1723.

[8] Gorokhov, O., Petrovskiy, M., Mashechkin, I., &

Kazachuk, M. (2023). Fuzzy CNN Autoencoder for

Unsupervised Anomaly Detection in Log Data.

Mathematics, 11(18), 3995.

[9] Kotenko, I. V., Melnik, M. V., & Abramenko, G. T.

(2024, June). Anomaly Detection in Container Systems:

Using Histograms of Normal Processes and an

Autoencoder. In 2024 IEEE 25th International

Conference of Young Professionals in Electron Devices

and Materials (EDM) (pp. 1930-1934). IEEE.

[10] Highnam, K., Arulkumaran, K., Hanif, Z., & Jennings,

N. R. (2021). Beth dataset: Real cybersecurity data for

unsupervised anomaly detection research. In CEUR

Workshop Proc (Vol. 3095, pp. 1-12).

[11] Lakha, B., Mount, S. L., Serra, E., & Cuzzocrea, A.

(2022, December). Anomaly detection in cybersecurity

events through graph neural network and transformer

based model: A case study with beth dataset. In 2022

IEEE International Conference on Big Data (Big Data)

(pp. 5756-5764). IEEE.

[12] Sushmakar, N., Oberoi, N., Gupta, S., & Arora, A.

(2022, June). An unsupervised based enhanced anomaly

detection model using features importance. In 2022 2nd

International Conference on Intelligent Technologies

(CONIT) (pp. 1-7). IEEE.

[13] Khan, L. P., Hossain, A., & Dey, S. (2023, February).

Anomaly Detection for Beth Dataset Using Machine

Learning Approaches. In 2023 Fifth International

Conference on Electrical, Computer and

Communication Technologies (ICECCT) (pp. 1-6).

IEEE.

[14] Security Observability with eBPF, Natália Réka Ivánkó

and Jed Salazar, O'Reilly, 2022

[15] Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G.,

Sourty, R., Vaysse, R., Bifet, A. (2021). River: machine

learning for streaming data in python. Journal of

Machine Learning Research, 22(110), 1-8.

[16] Yilmaz, S. F., & Kozat, S. S. (2020). PySAD: A

streaming anomaly detection framework in python.

arXiv preprint arXiv:2009.02572.

[17] Xu, J., Lin, C., Liu, F., Wang, Y., Xiong, W., Li, Z., ...

& Xie, G. (2023). StreamAD: A cloud platform metrics-

oriented benchmark for unsupervised online anomaly

detection. BenchCouncil Transactions on Benchmarks,

Standards and Evaluations, 3(2), 100121.

[18] Ding, Z., & Fei, M. (2013). An anomaly detection

approach based on isolation forest algorithm for

streaming data using sliding window. IFAC

Proceedings Volumes, 46(20), 12-17.

[19] Zhao, Y., Nasrullah, Z., & Li, Z. (2019). Pyod: A

python toolbox for scalable outlier detection. Journal of

machine learning research, 20(96), 1-7.

[20] Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007,

March). Incremental local outlier detection for data

streams. In 2007 IEEE symposium on computational

intelligence and data mining (pp. 504-515). IEEE.

[21] Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A.

(2018). Kitsune: an ensemble of autoencoders for online

network intrusion detection. arXiv preprint

arXiv:1802.09089.

[22] Pevný, T. (2016). Loda: Lightweight on-line detector of

anomalies. Machine Learning, 102, 275-304.

[23] Guha, S., Mishra, N., Roy, G., & Schrijvers, O. (2016,

June). Robust random cut forest based anomaly

detection on streams. In International conference on

machine learning (pp. 2712-2721). PMLR.

[24] Sathe, S., & Aggarwal, C. C. (2016, December).

Subspace outlier detection in linear time with

randomized hashing. In 2016 IEEE 16th International

Conference on Data Mining (ICDM) (pp. 459-468).

IEEE.

[25] Angiulli, F., & Fassetti, F. (2007, November). Detecting

distance-based outliers in streams of data. In

Proceedings of the sixteenth ACM conference on

Conference on information and knowledge management

(pp. 811-820).

[26] Manzoor, E., Lamba, H., & Akoglu, L. (2018, July).

XStream: Outlier detection in feature-evolving data

streams. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery &

Data Mining (pp. 1963-1972).

[27] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., ... & Duchesnay, É. (2011).

Scikit-learn: Machine learning in Python. The Journal

of machine Learning research, 12, 2825-2830.

Evgeniy Olegovich Eremin, Cand.Sc. (Engineering)
ORCID: 0009-0001-4330-2741

Associate professor at the Department of Radioelectronic Systems and

Complexes, Institute of Radioelectronics and Informatics, RTU MIREA.
Senior analyst of security event collection and analysis systems, BI.ZONE.

