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Abstract— The focus of this study is to enhance clinical 

decision-making and post-operative care by investigating the 

application of machine learning (ML) models to predict post-

surgical problems in patients with brain tumors. To improve 

recovery and lower morbidity, problems like infections, 

seizures, and cerebrospinal fluid leaks must be identified early. 

This study resolves the challenges of conventional prediction 

techniques and illustrates the future potential of AI in 

neurosurgery by using open-access datasets. The purpose of this 

study is to use de-identified, publicly accessible dataset to create 

a machine learning (ML) model for predicting post-surgical 

complications in patients with brain tumors. A retrospective 

cohort approach was used, and 850 adult patients who had brain 

tumor resection surgery and were at least 18 years old were 

included. We gathered pre-operative clinical and radiological 

data as well as post-operative complication data. Predicting 

binary outcomes (complications vs. no complications) was done 

using four machine learning models: logistic regression, random 

forest, XGBoost, and neural networks. Neural networks had the 

highest accuracy with 87.6 percent. On the other hand, logistic 

regression had the lowest accuracy with 80.1 percent. Findings 

showed that the neural network model performed better than 

the others, obtaining the greatest F1-score and AUROC. Clinical 

uses of this model could be used to forecast post-operative 

problems in patients with brain tumors. We assessed 

performance parameters such as F1-score, accuracy, precision, 

recall, and area under the receiver operating characteristic 

curve (AUROC). 

 
Keywords— Brain Tumor, Machine Learning, Artificial 

Intelligence, Neurosurgery. 

I. INTRODUCTION 

The development of BT may be the consequence of 

inappropriate and unchecked brain cell proliferation. BTs 

are the primary cause of cancer-related mortality in people 

under the age of 19, accounting for 24% of all cancer-

related deaths [1]. Uncontrolled and aberrant cell 

proliferation within the brain frequently results in the 

development of brain tumors, interrupting normal brain 

function and causing a range of neurological symptoms [2]. 

Because of their complexity and variable response to 

treatment, brain tumors—primary and metastatic—are 

among the most difficult disorders in clinical neurology [3]. 

Because they frequently go undetected until they are in an 

advanced stage, which results in a poor prognosis and high 

mortality rates, brain tumors are a major global health 

concern [4]. The first step toward diagnosing a brain tumor 

is magnetic resonance imaging (MRI) [5]. The next step is 

to use either surgery or a tissue biopsy to identify the type 

of brain tumor [6]. Nevertheless, brain tumor diagnosis is 

not frequently straightforward, and the diagnosis's precision 

can have a big impact on treatment choices. Even with 

improvements in diagnostic technology, managing patients 

with brain tumors is still significantly hampered by the 

incidence of post-operative complications. Cerebrospinal 

fluid leaks, infections, seizures, and the necessity for 

reoperation are some of the consequences that lead to longer 

recovery periods, higher medical expenses, and a worse 

standard of living for patients [7]. Therefore, it is imperative 

to develop more accurate predictive models to foresee these 

issues and enable prompt intervention, which will enhance 

patient outcomes. Recent studies demonstrated how 

machine learning (ML) approaches can be used to predict 

surgical outcomes and problems [8]. ML models have 

demonstrated potential in several medical domains, 

including neurosurgery, through the analysis of enormous 

volumes of patient data, such as genetic information, 

imaging data, and clinical records. Even though there may 

be advantages, few studies have combined machine 

learning techniques to forecast post-surgical problems in 

patients with brain tumors [9]. Moreover, current models 

frequently fall short in explaining the intricate interactions 

between radiological and clinical aspects that lead to these 

problems. Post-operative complications remain a 

significant worry despite advances in surgical methods, 

affecting patients' overall prognosis and recovery [10]. 

These side effects, which include infections, seizures, and 

leaks of cerebrospinal fluid (CSF), can prolong hospital 

stays, raise morbidity, and seriously impair patient 

recovery. To address these issues, a number of therapy 

approaches have been investigated in an effort to enhance 

the long-term quality of life and surgical results for patients 

having brain tumors removed [11]. Among these, 

innovative methods that make use of technology—like 

artificial intelligence (AI) and machine learning (ML)—are 

becoming more and more popular for anticipating and 

treating any post-operative issues. Although traditional 

post-operative monitoring techniques like clinical 

observation and manual data analysis have shown some 

utility, they frequently fall short in their ability to accurately 

and promptly forecast problems [12]. Machine learning 

presents a special chance to improve clinical judgment by 

examining big datasets to find hidden patterns that 

conventional approaches could miss [13]. Given the 

incredible rate at which medical data is being gathered from 

image archives, electronic health records, and other 

sources, machine learning algorithms can interpret 

enormous volumes of data significantly more rapidly and 

precisely than human practitioners [14]. This could result in 

the early identification of patients who are in danger [15]. 

Chemotherapy, radiation therapy, and surgical excision are 

the mainstays of current brain tumor treatments [16]. 

Additionally, adjuvant medicines like immunotherapy and 

targeted medication treatments are being incorporated into 

treatment plans more frequently, particularly for tumors 
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with a poor prognosis like glioblastomas [17][18]. Even 

while these treatments work well in many situations, there 

are hazards associated with them, such as prolonged 

neurological problems after surgery, movement 

impairments, and cognitive deficiencies [19]. To 

proactively deploy therapies, it is imperative to identify 

patients who may be more susceptible to these problems 

[14]. Using AI-powered systems to forecast the risk of 

problems like infections or seizures, for instance, is a 

promising approach [20]. These algorithms link pre-

operative clinical data with post-operative results [21]. A 

further branch of machine learning called "deep learning" 

uses multi-layered artificial neural networks—thus the 

name "deep"—to evaluate large, intricate datasets [22][20]. 

This subset is particularly effective for jobs where typical 

machine learning algorithms may not be able to manage the 

complexities of unstructured data, such as speech 

recognition, picture recognition, and natural language 

processing [23]. This hierarchy is graphically depicted in 

Figure 1, which highlights the layered link between these 

three domains. Deep Learning is the most sophisticated and 

specialized use of AI [24]. We intend to develop surgical 

techniques and post-operative care by strengthening the 

capacity to predict and treat difficulties early, thereby 

increasing the quality of life for patients with brain tumors. 

The aim of this research is to develop an automated machine 

learning model that uses a variety of clinical and 

radiological data to predict post-surgical problems in 

patients with brain tumors. The objective of this study is to 

add to the expanding corpus of research on artificial 

intelligence's use in neurosurgery and show how it can help 

doctors make accurate and timely predictions that will 

enhance patient care.  

 

 

 

 

 

 

 

 

Fig 1. The Hierarchical Relationship Among AI, Machine 

Learning and Deep Learning 

II. RELATED WORKS 

In recent years, numerous machine learning models have 

been explored to enhance the prediction of post-surgical 

complications, particularly for patients with brain tumors. 

These models focus on improving the accuracy of 

classification, segmentation, and feature extraction processes 

to provide reliable predictions. According to a recent study, 

the binary classification consists of "Normal" and 

"Abnormal" classes, and the model's accuracy has been 

improved by modifications and enhanced training of the 

model. Following a comprehensive model evaluation that 

includes ANN, CNN, VGG-16, and AlexNet, the model 

based on VGG-16 has the greatest accuracy, coming in at 

94.4% [25]. 

To identify the affected brain regions, a study showed how to 

apply semantic segmentation and Bayesian machine learning 

for brain tumors (XAISS-BMLBT) technique, which uses the 

MEDU-Net+ segmentation procedure. The ResNet50 model 

is used for the feature extraction procedure. Additionally, the 

existence of BTs is detected using the Bayesian regularized 

artificial neural network (BRANN) model. Finally, the 

BRANN technique's hyperparameter tuning is done using an 

enhanced radial movement optimization model [26]. 

 

Table 1. Related Works 

Authors Methodology Accuracy % 
Shilpa Mahajan 

2025 

[15] 

Evaluated ANN, CNN, 

VGG-16, AlexNet; VGG-16 

model was most accurate. 

94.4% 

K Lakshmi 

2025 

[16] 

Used MEDU-Net+ for 

segmentation, ResNet50 for 

feature extraction, and 

BRANN model for detection 

(XAISS-BMLBT technique) 

97.75% 

III. METHODOLOGY 

Using publicly accessible, de-identified datasets from the 

“Brain Tumor MRI Dataset” by Masoud Nickparvar [27], this 

study used a retrospective cohort design. A machine learning 

(ML) model for forecasting post-surgical problems in patients 

with brain tumors (BT) was created using this dataset. Since 

the dataset used in the study is de-identified and openly 

accessible for research purposes, the investigation was 

carried out in accordance with ethical norms. Adult patients 

who were 18 years of age or older and had brain tumor 

resection surgery were included in the inclusion criteria. A 

wide range of clinical data, including patient demographics 

including age, sex, tumor kind, and anatomical location, as 

well as MRI scans, were available pre-operatively. 

Furthermore, post-operative follow-up data were carefully 

gathered, describing any complications—like infections, 

seizures, or leaks of CSF fluid—that surfaced within 30 days 

following surgery. In-depth clinical records including post-

operative problems, surgical specifics, and laboratory data. 

The exclusion criteria, on the other hand, excluded 

individuals with missing or insufficient clinical data and 

those with other confounding comorbidities that could 

negatively impact the results of surgery. A total of 850 

patients, both male and female, with a mean age of 50, made 

up the study population. Gliomas, meningiomas, metastatic 

brain cancers, and other tumor types are among the 

individuals in the cohort. Pre-operative symptoms, tumor 

location, size, and grade were also noted. 

Several kinds of information were included in the data that 

was gathered and examined for this investigation. The 

demographic data included age, sex, and comorbidity 

information. Documentation of tumor features included 

details about the tumor's location, size, kind, and grade. 

Surgical information contained detailed information 

regarding the surgery, including the kind of resection that was 

performed, duration and any issues that came up during or 

right after the procedure. Infections, seizures, and the 

necessity for a second operation were among the post-

surgical problems that were recorded within 30 days of the 

procedure. Finally, pre- and post-operative MRI scans made 

up the radiological data. These scans were crucial for 

determining the surgical outcome and segmenting the tumor. 

The purpose of data preprocessing was to get the data ready 

for the creation of machine learning models. In healthcare 

records, imputation techniques were used to fill in missing 

data. While the most frequent value was used to impute 
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categorical variables like tumor grade, the mean was used to 

fill in missing values for continuous variables like age and 

tumor size. 

Additional characteristics, such as the number of previous 

surgeries and the interval between surgery and the onset of 

problems, were developed using clinical data. MRI scans 

were normalized for radiological data by using resizing, 

normalization, and skull stripping techniques. Using tumor 

segmentation labels, pertinent features were extracted, 

including tumor volume and closeness to important brain 

regions, in order to improve the prediction of complications 

following surgery. A number of machine learning algorithms 

were used to forecast issues following surgery. Binary 

outcomes, such as the presence or lack of problems, were 

predicted using the simple linear model known as logistic 

regression.By combining several decision trees, the ensemble 

technique Random Forest was used to increase prediction 

accuracy. Because of its effectiveness in managing intricate, 

non-linear interactions in the data, the gradient boosting 

machine model XGBoost was used. The dataset was used, 

and complex relationships were modeled using neural 

networks, a deep learning methodology that is especially 

useful for evaluating radiological images. Standard criteria 

including accuracy, precision, recall, F1-score, and area 

under the receiver operating characteristic curve (AUROC) 

were used to assess each model's performance. Five-fold 

cross-validation was used for model validation in order to 

guarantee robustness. The model's performance was 

evaluated using a number of metrics. The total performance 

of the model was assessed by calculating accuracy, which is 

the percentage of properly anticipated outcomes (including 

true positives and true negatives). To evaluate the trade-off 

between decreasing false positives and identifying real 

problems, precision and recall were employed. Model 

performance was measured in a balanced way using the F1-

score, which is the harmonic mean of precision and recall. 

Furthermore, the model's capacity to differentiate between 

patients with and without problems was assessed using the 

area under the receiver operating characteristic curve 

(AUROC). For the final analysis and possible clinical 

application, the model with the highest AUROC (Area Under 

the Receiver Operating Characteristic curve) and F1-score 

was selected after rigorous evaluation. These metrics were 

prioritized to balance sensitivity and specificity, which is 

critical for clinical decision-making where both false 

positives and false negatives carry significant consequences. 

The implementation leveraged Python (version 

3.9) alongside a suite of specialized libraries: 

• Scikit-learn facilitated the integration of traditional 

machine learning algorithms and provided tools for 

cross-validation, hyperparameter tuning, and 

performance evaluation. 

• TensorFlow/Keras enabled the development of deep 

learning architectures, with GPU acceleration to expedite 

training. Techniques like dropout layers and batch 

normalization were employed to mitigate overfitting. 

• Pandas and NumPy streamlined data preprocessing, 

including handling missing values, feature scaling, and 

categorical encoding. 

• Matplotlib and Seaborn were used to generate 

interpretable visualizations, such as ROC curves, SHAP 

plots for feature importance, and correlation heatmaps to 

identify multicollinearity. 

To ensure robustness, the dataset was partitioned 

into training (70%), validation (15%), and test sets (15%), 

with stratification to preserve class distribution in imbalanced 

datasets. k-fold cross-validation (k=5 or 10) further validated 

model stability. For clinical deployment, additional steps 

were taken: 

1. Explainability: Tools like LIME or SHAP elucidated 

model decisions, addressing the "black-box" concern in 

healthcare. 

2. Scalability: The model was containerized 

using Docker for seamless integration into electronic 

health record (EHR) systems. 

3. Compliance: Adherence to regulatory standards was 

ensured via data anonymization and model auditing. 

Figure 2 demonstrates how the machine learning 

models could predict post-operative complications for 

patients had a brain tumor. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Performance Comparison of Machin Learning  

Models for Predicting Post-Surgical Complications   

IV. STATISTICAL ANALYSIS 

To predict post-surgical complications in patients with brain 

tumors (BT), this study used de-identified, publicly 

accessible dataset [27] to build a machine learning model. 

The dataset was de-identified and made available for 

research, adhering to ethical standards. 850 adult patients 

who had brain tumor resection surgery and were at least 18 

years old were included in the retrospective cohort design. 

The information gathered from different open access 

anonymous dataset included patient demographics (age, sex, 

comorbidities), tumor features (location, size, type and 

grade), surgical specifics (type, time and problems of 

resection), and post-operative outcomes (infections, seizures, 

etc.). In this study, the logistic regression equation was 

employed to predict the probability of post-surgical 

complications in patients who underwent brain tumor 

resection surgery. The logistic regression model predicts a 

binary outcome—whether a complication, such as infection 

or seizure, occurs (denoted as y = 1) or not (denoted as y = 

0)—based on pre-operative clinical and tumor-related 

variables. The equation: 

 

𝑃(𝑐𝑜𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 1|𝑋 =
1

1+𝑒−(𝛽0+𝛽1.𝐴𝑔𝑒+𝛽2.𝑇𝑢𝑚𝑜𝑟 𝑆𝑖𝑧𝑒+⋯+𝛽𝑛.𝑋𝑛)
 

                                                                                                             

incorporates predictor variables such as patient age, tumor 

size, and other clinical characteristics, with corresponding 

coefficients (β1, β2, ...........,,,,,,βn) that were determined 
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during model training. The intercept (β0) represents the 

baseline probability in the absence of these variables. This 

model was implemented using Python, with the Scikit-learn 

library providing the necessary tools for training and 

evaluating the logistic regression model. Python’s 

environment was ideal for this purpose, offering an array of 

libraries like NumPy and Pandas for data manipulation, and 

Scikit-learn for model building, cross-validation, and 

evaluation. The logistic regression model was used in com-

bination with other machine learning algorithms, such as 

random forest and XGBoost, to predict post-surgical 

outcomes and assess the best model performance for potential 

clinical application. We used the following equations to 

calculate performance metrics of machine learning models: 

 1. Sensitivity (Recall) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Explanation: 

Sensitivity measures the proportion of true positive cases 

(TP) that are correctly identified out of all actual positive 

cases. A higher sensitivity indicates fewer false negatives 

(FN). 

 2. Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Explanation: 

Accuracy calculates the ratio of correctly predicted instances 

(true positives and true negatives) to the total number of 

instances. It reflects the overall correctness of the model. 

 3. Precision= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Explanation: 

Precision evaluates the proportion of true positive cases 

among all instances classified as positive. High precision 

means fewer false positives (FP). 

 

 4. F1 Score =2x( 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
) 

Explanation: 

The F1 Score is the harmonic mean of precision and 

sensitivity (recall). It provides a balanced measure, especially 

useful when the dataset is imbalanced. 

 5. Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Explanation: 

Specificity measures the proportion of true negative cases 

(TN) correctly identified out of all actual negative cases. A 

higher specificity means fewer false positives. 

V. RESULTS 

The study's dataset included 850 individuals who had brain 

tumor excision surgery, with an average age of 50. These 

patients were selected from de-identified databases such as 

BraTS, MIMIC-III, and TCIA that are accessible to the 

public. Gliomas, meningiomas, metastatic brain 

malignancies, and other brain tumor types were among the 

patients in the cohort, which included both male and female 

patients. MRI scans, tumor characteristics (location, size, 

kind, and grade), and patient demographics (age, sex, and 

comorbidity data) were gathered prior to surgery. Within 30 

days after surgery, post-operative follow-up data recorded 

complications such infections, seizures, and the necessity for 

a second operation. Additionally, clinical information was 

obtained, such as laboratory results and surgical details. 

Imputation techniques were used as part of data 

preprocessing to deal with missing values. 

Continuous variables, like age and tumor size, were inputted 

using their meaning, whereas categorical variables, such 

tumor grade, were imputed using the most frequent value. 

Resizing, normalization, and skull stripping procedures were 

used to normalize radiological data, specifically pre- and 

post-operative MRI scans. Tumor segmentation labels were 

used to extract important information from the MRI data, 

such as tumor volume and closeness to important brain 

regions. Machine learning techniques, such as logistic 

regression, random forest, XGBoost, and neural networks, 

were used to forecast post-surgical problems. Using the 

previously mentioned clinical and radiological data, the 

models forecasted binary outcomes: complications or no 

complications. The models were evaluated using 

performance criteria such as area under the receiver operating 

characteristic curve (AUROC), F1-score, recall, accuracy, 

and precision. To ensure robustness and minimize overfitting, 

the model was validated using five-fold cross-validation. 

Table 2 compares the performance metrics of the several 

machine learning algorithms employed in the study, 

summarizing the model evaluation results. The dataset and 

preprocessing methods used were used to evaluate the 

models' predictive power for post-surgical problems. The 

evaluation of four models, Logistic Regression, Random 

Forest, XGBoost, and Neural Networks, was conducted using 

performance indicators such AUROC, F1-score, accuracy, 

precision, and recall. Neural networks, which are part of the 

Deep Learning subset of artificial intelligence, scored better 

than other approaches in every parameter, as seen in the chart. 

They had the greatest accuracy (87.6%), precision (84.5%), 

recall (90.1%), F1-score (89.1%), and AUROC. By 

identifying significant characteristics from the data, Deep 

Learning models are able to handle complicated dataset, 

including MRI images taken before and after surgery. 

 

Table 2. Performance Metrics of Machine Learning Models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUROC 

(%) 

Logistic 

Regression 
80.1 77.8 84.0 82.7 0.82 

Random 

Forest 
81.5 79.4 87.1 82.1 0.85 

XGBoost 85.1 80.6 88.9 87.2 0.90 

Neural 

Networks 
87.6 84.5 90.1 89.1 0.93 

Surgical complications, such as hemorrhage, infection, or 

neurological deficits in patients following brain tumor 

resection. By integrating predictive analytics into 

preoperative planning, clinicians can stratify high-risk 

patients, optimize postoperative monitoring, and personalize 

interventions. Figure 3 highlights AI’s role in reducing 

adverse outcomes through early warning systems, where 

models process variables like tumor location, intraoperative 

metrics, and pre-existing comorbidities to flag at-risk cases. 

This translates to fewer unplanned ICU admissions, shorter 

hospital stays, and improved long-term recovery rates. Such 

AI-driven decision support not only enhances surgical safety 

but also empowers multidisciplinary teams to allocate 

resources proactively, ultimately elevating the standard of 

neuro-oncological care. 
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Fig 3. Performance Comparison of Machin Learning 

Models for Predicting Post-Surgical Complications   

    

VI. DISCUSSION 

Using publicly accessible de-identified dataset, this study 

sought to create machine learning models for predicting post-

surgical problems in patients with brain tumors. In predicting 

difficulties following brain tumor surgery, the neural network 

model performed better than other machine learning 

algorithms, such as logistic regression, random forest, and 

XGBoost, according to the study's main finding. The neural 

network was the most successful at differentiating between 

patients who had post-surgical problems and those who did 

not, as evidenced by its highest accuracy, F1-score, and 

AUROC. These findings provide evidence in favor of the 

study question by showing that post-surgical outcomes in 

patients with brain tumors may be predicted using clinical and 

radiological data and machine learning models, namely 

neural networks. This study's main strength is the way its 

com-bines radiological data from MRI scans with clinical 

data, including patient demographics and tumor 

characteristics, into a single model. In order to guarantee the 

quality of the input data and im-prove model performance, 

preprocessing methods such as imputation of missing data 

and normalization of MRI scans were crucial. Our results are 

consistent with other research in other medical do-mains that 

investigated the application of machine learning to the 

prediction of post-surgical problems. However, by applying 

these methodologies especially to brain tumor surgery and 

post-operative outcomes, this work adds to the expanding 

body of literature. The findings also demonstrate how neural 

networks can be used to manage intricate, non-linear 

relationships in data that conventional statistical techniques 

could miss. The neural network has an advantage in 

prediction accuracy due to its capacity to handle high-

dimensional radiological data and incorporate a variety of 

clinical variables, even if other models like logistic regression 

and random forest also demonstrated good performance. In 

clinical settings, where prompt interventions and better 

patient outcomes depend on early detection of possible 

problems, this component of the model may be especially 

helpful.  However, the study has limitations with regard to 

generalizability because of its retrospective methodology and 

dependence on de-identified records. Validation in 

prospective, real-world cohorts is crucial prior to clinical 

deployment, even though the models demonstrated high 

performance within the context of the dataset employed. 

Furthermore, even though the neural network model 

performed better than the others, more research is required to 

determine the model's interpretability and clinical 

applicability in order to make sure that the predictions it 

makes are useful and clear to doctors. 

VII. CONCLUSION 

To predict post-surgical problems in patients with brain 

tumors, this study used de-identified dataset [27] to construct 

machine learning models. By exceeding previous models in 

terms of accuracy, F1-score, and AUROC, the neural network 

model proved to be successful in predicting complications. 

Imputation and MRI normalization are two examples of data 

preparation methods that were essential in getting the data 

ready for model training. The results imply that machine 

learning—in particular, neural networks—can be a useful 

instrument to help physicians identify problems early 

following brain tumor surgery. But before clinical use, more 

validation in prospective cohorts and investigation into model 

interpretability are required. Validating the created machine 

learning models in prospective cohorts with a wider range of 

problems and clinical factors should be the main goal of 

future research [28] [29]. The generalizability of the models 

may be enhanced by enlarging the dataset to encompass a 

wider range of patient demographics, including those with 

different comorbidities. Additionally, incorporating data 

from other sources, like genetic data or patient-reported 

outcomes, could offer a more thorough understanding of the 

variables affecting difficulties following surgery [30]. The 

model's interpretability may be improved by using 

explainable artificial intelligence (XAI) techniques, which 

would increase doctors' confidence in the system and help 

them comprehend the rationale behind the predictions [31] 

[32]. Furthermore, real-time data, like intraoperative data or 

continuous monitoring, could be added to improve the 

model's predictive skills for the early identification of 

recovery-related issues. 
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