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Abstract—In this paper, we present a dataset and a deep 

neural network model for predicting signal quality in an urban 

outdoor environment for Unmanned Aerial Vehicles (UAVs)-

assisted wireless networks. The dataset contains Signal-to-

Interference-plus-Noise Ratio (SINR) and Line-of-Sight (LoS) 

values for different locations and heights in the region of 

interest, calculated using a ray-tracing model based on the 

Shooting and Bouncing Rays (SBR) method. We analyze the 

dataset to investigate the dependence of SINR and LoS values 

on the distance and height of the receiver. We also propose a 

Deep Neural Network (DNN) model trained on the dataset to 

predict signal quality in the selected region at different heights. 

We evaluate the performance of the DNN model and show that 

it can accurately predict the coverage probability in the region 

of interest. 

 
Keywords—deep neural network, signal-to-interference-plus-

noise ratio, dataset. 

I. INTRODUCTION 

Smart cities, mobile networks, the Internet of Things, 

driverless cars, and many more applications and services are 

made possible by wireless communication, which is an 

essential technology [1–3]. Unmanned Aerial Vehicles 

(UAVs) have become a viable way to improve wireless 

network performance. UAVs are able to operate as wireless 

network providers as well as users [4,5]. By connecting 

remote or difficult-to-reach places, UAVs can enhance 

wireless networks' capacity, coverage, and energy efficiency 

in their role as providers [4]. Their flexibility, mobility, and 

adaptability make them well-suited for this role. As 

consumers, UAVs can utilize existing networks to support 

applications such as remote sensing, virtual reality, and item 

delivery [4].  

However, wireless communication is subject to various 

factors that can affect its performance, including distance, 

height, frequency, interference, noise, weather conditions, 

and environmental geometry [6, 7]. The environment in 

which the signals are transmitted and the likelihood of line-

of-sight between the UAV and ground station, which is 

dependent on the UAV's flying height [4], both affect the 

air-to-ground communication channel between the UAV and 

the ground station. It is therefore important to understand 

and model the wireless communication environment in order 

to optimize network performance and air-to-ground signal 
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quality. 

One approach to modeling the wireless communication 

environment is through the use of ray-tracing methods. 

These methods simulate the propagation of radio waves in a 

given environment by tracing the paths of rays that reflect 

and diffract from different surfaces and objects [8, 9]. Ray-

tracing methods can provide accurate and realistic results 

but require detailed information about the environment’s 

geometry and material properties as well as significant 

computational resources [9, 10]. 

Machine learning (ML) has the potential to revolutionize 

wireless networks by enabling more intelligent functions 

that optimize network operations and meet the diverse needs 

of emerging wireless applications [4]. With ML, wireless 

networks can proactively take more adequate actions by 

learning and predicting various factors such as traffic 

patterns, communication channel dynamics, user context, 

content requests, and more [4]. 

In this paper, we introduce a dataset of signal-to-

interference-plus-noise ratio (SINR) and line-of-sight (LoS) 

values for wireless communication in an urban outdoor 

environment. We employ a ray-tracing model based on the 

Shooting and Bouncing Rays (SBR) method [11] to 

calculate signal propagation paths and losses between 18 

ground base stations and a receiver at various locations and 

heights in a region of interest. We analyze the dataset to 

investigate the dependence of SINR and LoS values on the 

distance and height of the receiver. The simulation results 

provide insight into the propagation environment for the 

deployment of UAVs as providers or consumers of wireless 

networks. The dataset can be utilized for a range of 

applications, including the development and validation of 

propagation models, optimization of wireless network 

design, and investigation of environmental factors on 

wireless communication. 

To address the computational costs associated with the 

SBR method [9, 10], we propose a deep neural network 

(DNN) model trained on the resulting dataset to predict 

signal quality in the selected region at different heights. This 

model can be used to optimize trajectory planning and 

placement of UAVs. Additionally, it can serve as a pre-

trained model that can be fine-tuned by UAVs using their 

collected data. 

II. SYSTEM MODEL 

The system consists of   transmitters located at different 

locations           , where               in an outdoor 

environment. A single receiver is located at position 

           in the same outdoor environment. Each 

transmitter   at position            transmits signal of 
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frequency   and power    that propagates through the 

environment and is received by the receiver. The received 

signal power    at the receiver due to the     transmitter can 

be expressed taking into account the propagation loss, 

antenna gains, and any interference and noise present in the 

system. Mathematically, the received signal power can be 

represented as follows: 

 

                           (1) 

 

where           is the antenna gain of the     transmitter 

in the direction of        ,           is the antenna gain 

of the receiver in the direction of        ,    and    are the 

elevation angles,    and    are the azimuth angles, and    

is the path loss between the     transmitter and the receiver. 

   depends on the propagation model and environment 

geometry. Fig. 1 shows an example with one receiver and 

two transmitters, along with the propagation paths between 

them. 

 
Figure 1. The signal propagation paths between one receiver 

and two transmitters in a 3D environment 

The interference power at the receiver due to all 

transmitters except the     transmitter is given by: 

 

 

  ∑   
   

 ∑   
   

              
    

     
(2) 

 

where    
    

   are the angles of arrival of the interference 

signals at the receiver. The SINR at the receiver is given by: 

 

      
  

        

 (3) 

 
where        is the noise power at the receiver. 

For every transmitter-receiver pair, we must compute the 

route losses    and    in order to get the SINR at the 

receiver. This can be accomplished by either the image 

approach or the SBR method with a ray-tracing model [9, 

11]. This model can be used to calculate propagation 

pathways with geometry from 3D environments [8] for 

frequencies between 100 MHz to 100 GHz [12]. To simulate 

radio wave propagation in a three-dimensional outside 

setting, the SBR approach is utilized. Free-space loss, 

reflection losses, and diffraction losses are taken into 

consideration in path loss computations [13]. The Fresnel 

equation, Uniform Theory of Diffraction (UTD) [14], 

geometric angle, and complex permittivity of interface 

materials    [13] are used by the model to compute losses 

for each reflection and diffraction. 

For a variety of frequencies, the ITU-R P.2040-2 [15] 

guidelines provide formulas, techniques, and numbers for 

calculating the    of construction materials. ITU-R P.527-6 

[16] contains the equations needed to compute complex 

permittivity values for Earth’s surface. The following 

formula is used to compute the complex permittivity values 

for building materials    [16]: 

 

   
      (4) 

       (5) 

      
   

 

     
 (6) 

 

where   
  is the relative permittivity,   is the conductivity, 

   is the permittivity of free space, and   is the radio wave 

frequency. The constants  ,  ,  , and   are defined by the 

surface material. 

III. RAY-TRACING SIMULATIONS 

A. Data Collection 

To collect the dataset, a region of interest measuring 10x10 

km was selected. To accurately model the impact of 

surrounding buildings on the propagation environment, 

OpenStreetMap (OSM) [17] was used to obtain a database 

of buildings in the region of interest. The OSM API was 

used to extract buildings data and incorporate it into the ray-

tracing model to calculate SINR values. Fig. 2 shows the 

distribution of buildings inside the selected region, where 

approximately 40% of the area is occupied by buildings, 

while the remaining portion comprises terrain surface. The 

majority of building heights are lower than 10m. 

 
Figure 2. Buildings distribution in the selected region 
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A set of randomly selected points within the region of 

interest was generated, with the height of each point 

randomly chosen between 20m and 300m to capture the 

variation in SINR and the probability of LoS values. The 

SINR values were calculated for a receiver at each generated 

point and a set of transmitters, 18 ground base stations 

(GBs), located at specific points on the ground at a height of 

10m with an operating frequency f of 2.5 GHz. 

The ray-tracing model used the SBR method with a 

maximum of two reflections and one diffraction per ray. The 

model takes into account the position of ground base 

stations, surrounding buildings, building materials, and 

terrain materials to calculate signal strength and interference 

at each point. 

The construction material is concrete, and the values 

      ,    ,          and          from Table 3 

in [15] are used to calculate    using (6), where   
       

and          calculated using (4) and (5), respectively. 

The terrain material is vegetation, and    is computed for 

temperatures above zero and utilizing formulas (51), (51), 

and (53) in [16]. 

In addition to SINR values, we also recorded LoS 

information for each ground base station and receiver pair. 

LoS information was calculated using a simple line-of-sight 

model that assumes a clear line-of-sight path between 

transmitter and receiver if there are no obstacles between 

them. 

We use the Euclidean distance formula to calculate the 

distance      between a receiver at location             and 

the transmitter   at location            in the UTM 

coordinate system [18], assuming negligible error due to the 

Earth’s curvature at the scale of the selected region. 

 

      √       
         

         
  (7) 

 

We compute the distance    between a receiver at 

location            and the   transmitters as follows: 

 

    ∑    

 

   

 (8) 

 

We also compute the probability of LoS,           , for 

each data point            based on the LoS condition 

       between each transmitter   and a receiver at that data 

point as follows: 

 

           
∑       

 
   

 
 (9) 

B. Data Description 

The dataset contains       samples. Each sample consists 

of 24 dimensions: X coordinate, Y coordinate, height, SINR, 

LoS condition for each of the 18 transmitters, the propability 

of LoS using (9) and the distance using (8). The X and Y 

coordinates are defined in the Universal Transverse 

Mercator (UTM) coordinate system, which is easy to use 

and provides a constant distance relationship in meters 

anywhere on the map [18]. The height is measured in meters 

above the ground level and it varies from 20m to 300m. The 

LoS condition between each transmitter and a receiver at the 

point       is recorded as a binary value, where 1 indicates 

a clear path and 0 indicates an obstructed path. 

IV. PREDICTION OF SIGNAL QUALITY 

Ray-tracing simulation give a good understanding of the 

propagation environment where the UAVs could be used for 

different use cases. However, the ray-trancing model with 

the SBR method are costly regarding the computational 

resources and the time needed to measure the signal quality 

at different locations in the area where the UAVs should 

operate [9,10]. To overcome these limitations, we use the 

collected dataset to train a deep neural network to help in 

prediction the signal quality in the region of interest. 

A. Problem Formulation 

The problem of predicting SINR at different locations can 

be formulated as follow: Let                     
  be a 

dataset containing   records. The vector            

represents the 3D coordinates of the     point, while    is the 

SINR value. This can be done by a function        that 

maps the input features to the output target (SINR) which is 

a regression problem. The SINR depends on many factors 

related to the propagation environments, thus, it is difficult 

to find a solution to this problem based only on a 3D 

coordinates. However, deep learning can be used to 

approximate the function  . 

Let denote the approximation function                   

that is parameterized by the weights and biases   of a neural 

network. The goal is to find   that minimizes a loss function 

          [19].           is used to measure the 

discrepancy between the predicted and true SINR values. 

 

    
 

          
 

 
∑  (         )

 

   

 (10) 

 
SINR values are continuous and noisy, and may not have 

a simple relationship with the input features. Thus, this 

regression problem could be challenging. Therefore, we 

simplify it to a classification problem. In order to maintain a 

reliable connection between a UAV and its ground base 

station, it is necessary for the signal quality in the serving 

area to exceed a certain threshold, denoted by  . Therefore, 

we simplify the problem by discretizing the SINR values 

into two categories       based on the threshold  . Let us 

denote          as follows: 

 

          {
                  
                   

 (11) 

 
Thus,      can be rewritten as                   .     is a 

vector that indicates the probability of each category. Thus, 

the problem is now a classification problem and the cross-

entropy can be used as a loss function. Thus,           can 

be defined as follows: 
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(12) 

 
where      is the probability of the     point belonging to the 

category  . 

B. Proposed DNN Model 

As shown in Fig. 3, we suggest a DNN model that consists 

of an input layer, three hidden layers, and an output layer.   

neurons are found in the first and third hidden layers, 

whereas    neurons are found in the second hidden layer. 

The output layer uses the Sigmoid activation function, 

whereas the hidden levels employ the ReLU activation 

function. After examining a number of structures with 

varying numbers of hidden layers, it was shown that the 

model's performance does not significantly improve when 

the number of hidden layers is increased above three. 

 
Figure 3. Deep neural network structure 

C. Data Prepossessing 

Normalizing the input data before feeding it into a neural 

network can help in ensuring that each feature contributes 

equally to the training process and can improve the 

convergence of the optimization algorithm [19]. The range 

normalization formula is defined as follows: 

 

       
      

         
 (13) 

 
where   is the original value of a feature,      and      are 

the minimum and maximum values of that feature, 

respectively, and       is the normalized value of that 

feature. Equations (11) and (13) were used to normalize the 

values in the dataset before training. Moreover, the dataset 

was spitted into an 80\% training subset and a $20\% 

validation subset. The training subset was used to train the 

neural network, while the validation subset was used to 

evaluate the performance of the trained neural network on 

data that it had not seen during training. 

V. RESULTS 

A. Exploratory Data Analysis 

In this section, we examine the dataset to learn about its 

properties and look for any trends or patterns. The 

histograms for the X and Y coordinates are displayed in Fig. 

4 and Fig. 5, respectively. The data samples are not evenly 

distributed over the X and Y dimensions, but rather are more 

concentrated at some intervals than others, as the histograms 

show. However, we can notice that every interval has at 

least 200 samples. Thus, that there are no gaps or sparse 

areas in the data, which indicates that the data is relatively 

dense and covers a wide range of X and Y coordinates. 

If we look at the height dimension, as Fig. 6 shown, we 

can confirm that the samples are densely distributed, with no 

intervals having zero or very few samples. Moreover, the 

samples do not have a distinct mode or peak in their heights. 

The distribution of data samples along the SINR 

dimension is shown in Fig. 7. The tallest bar in the 

histogram indicates that the samples have a unimodal 

distribution with a mode of -5 dB. Additionally, the samples 

have a lengthy right tail in the histogram and are positively 

skewed. This implies that there are more samples with low 

SINR than with high SINR, and thus the data is lopsided. 

 
Figure 4. Samples distribution along the X coordinates 

 
Figure 5. Samples distribution along the Y coordinates 

The data sample distribution along the LoS dimension is 

displayed in Fig. 8. The majority of the transmitters have a 

large number of samples with a LoS value of 1, as the bar 

graph shows. This suggests that the non-LoS condition is 

rare among the samples and that LoS is not a significant or 

typical component of the data. Transmitter 11 alone, for 

example, has fewer than       samples; the rest have more 
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than       samples. This implies that in nearly every place 

within the chosen region, there is a high likelihood of having 

LoS between the receiver and the majority of the 

transmitters. However, because the majority of the samples 

have low SINR values, the signal quality is typically poor. 

This suggests that even with a high risk of loss of service, 

the signal quality is diminished by both environmental 

interference and signal attenuation as it spreads over a wide 

region. 

 
Figure 6. Samples distribution along the height dimension 

 
Figure 7. Samples distribution along the SINR dimension 

Fig. 9 plots the SINR values versus the distance for 

different heights. We observe that the SINR values decrease 

as the distance between the receiver and the transmitter 

increases, irrespective of the height of the receiver. This 

implies that the signal quality deteriorates as the distance 

grows. However, we can also infer that the height of the 

receiver affects how quickly the SINR values decrease. The 

higher the receiver, the slower the decrease for heights from 

50m to 200m. 

The probability of LOS decreases as the distance between 

the receiver and transmitter increases, irrespective of height, 

as shown in Fig. 10. This implies that having a direct line of 

sight between them becomes less likely as they move farther 

apart. However, we can also infer that height affects how 

quickly this probability decreases. The higher the receiver, 

slower is this decrease for heights from 50m to 150m. 

B. Deep Learning Model Architecture Selection 

We tuned the hyperparameter $H$, which controls the 

number of neurons in the hidden layers of the proposed 

DNN model architecture, to optimize the model’s 

performance. Fig. 11 (a) shows the loss function values for 

different values of H. The loss function decreases as H 

increases, indicating that the model becomes more accurate 

with more neurons in the hidden layers. Fig. 11 (b) shows 

the validation accuracy values for different values of H. The 

validation accuracy increases as H increases, until   
    , where it stagnates. This suggests that increasing H 

beyond a certain point does not improve the model’s 

performance, but rather increases its computational cost and 

training time. 

 
Figure 8. Samples distribution along the LOS dimension for 

each transmitter 

 
Figure 9. SINR values versus distance at different heights 
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Figure 10. Probability of LOS versus distance at different 

heights 

Moreover, we observe that for      and      , the 

 

 
(a) 

 
(b) 

Figure 11. Training results for different H values: a) training loss, b) validation accuracy

loss function plateaus after some training rounds, implying 

that the model has reached its optimal state and further 

training does not improve its predictive power. In fact, the 

validation accuracy decreases for      , indicating that 

the model overfits the training data and fails to generalize to 

new data. For       and      , the loss function and 

the validation accuracy continue to improve throughout the 

training process, suggesting that these values are more 

suitable for the model. However, since there is no significant 

difference between       and       in terms of 

performance, we choose       as the optimal value to 

balance model complexity and performance. 

C. Signal Quality Predictions 

We employed the DNN model to forecast the signal quality 

in the chosen area once it had been trained. Fig. 12 shows 

the coverage probability in the region of interest at different 

heights. It is seen that each ground base station's coverage 

area is predicted by the DNN model with accuracy. A center 

with a coverage probability of one exists in each of the 

coverage zones, and its coverage probability diminishes 

with distance. It's also important to remember that the 

coverage area decreases with height.  

VI. DISCUSSION 

In this paper, we have presented a novel approach to 

model and predict the wireless communication environment 

for UAVs in an urban outdoor scenario. We have used a ray-

tracing technique based on the SBR method to generate a 

dataset of SINR and LoS values for different locations and 

heights. We have analyzed the dataset to investigate the 

dependence of SINR and LoS values on the distance and 

height of the receiver. We have found that the SINR values 

decrease as the distance increases, irrespective of the height, 

while the LoS probability decreases as the distance 

increases, but is affected by the height. We have also found 

that the signal quality is generally poor, despite the high LoS 

probability, due to the interference and attenuation effects of 

the environment. 

We have presented a DNN model trained on the generated 

dataset to forecast signal quality in the targeted region at 

different heights, hence mitigating the computational costs 

associated with the SBR technique. After fine-tuning the 

DNN model's hyperparameters to maximize performance, 

we assessed the accuracy of the model on a validation 

subset. We have demonstrated that the coverage probability 

in the region of interest corresponding to each ground base 

station can be reliably predicted by the DNN model. 

Additionally, we have demonstrated that when height 

increases, the coverage area reduces. 

 

Our method has a number of benefits. First, by 
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accounting for the geometry and material properties of the 

3D environment, it can produce results that are accurate and 

lifelike. Second, by employing a DNN model trained on a 

ray-tracing dataset, it can cut down on both computational 

complexity and time. Thirdly, by altering the ray-tracing 

model's input parameters and retraining the DNN model, it 

is readily adjustable to various circumstances and frequency. 

Future research must address the limitations and 

difficulties of our approach. Initially, our dataset is restricted 

to a single area and frequency range. Second, the static 

dataset used to train our DNN model ignores dynamic 

elements like traffic, weather, movement, and outside 

interference. It would be useful to incorporate these factors 

into our dataset and DNN model to make them more robust 

and adaptive. 

VII. CONCLUSION 

In conclusion, we provided a dataset of SINR and LoS 

values for outdoor wireless communication, which were 

determined using a ray-tracing model derived from the SBR 

technique. The model considers how adjacent buildings 

affect the environment for wireless communication. The 

dataset can be applied to a number of tasks, including 

wireless network design optimization and the creation and 

validation of propagation models. We suggested a DNN 

model trained on the dataset to forecast signal quality in the 

targeted region at different heights in order to mitigate the 

computational expenses related to the SBR method. Without 

the need for laborious and time-consuming ray-tracing 

simulations, the DNN model can provide quick and accurate 

predictions and is easily customizable to account for 

variations in the surrounding environment. We plan to use 

the DNN model as 

 
(a) 

 
(b) 

 
(c)  

(d) 
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(e) 

 
(f) 

Figure 12. Predicted coverage probability in the region of interest at different altitudes: a) 20m, b) 50m, c) 100m, d) 150m, e) 

200m, f) 300m.

a pre-trained model that can be fine-tuned by UAVs using 

their collected data. 
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