
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

Abstract—Nowadays, latency-critical, high-performance

applications are parallelized even on power-constrained client
systems to improve performance. However, an important
scenario of fine-grained tasking on simultaneous
multithreading CPU cores in such systems has not been well
researched in previous works. Hence, in this paper, we conduct
performance analysis of state-of-the-art shared-memory
parallel programming frameworks on simultaneous
multithreading cores using real-world fine-grained application
kernels. We introduce a specialized and simple software-only
parallel programming framework called Relic to enable
extremely fine-grained tasking on simultaneous multithreading
cores. Using Relic framework, we increase performance
speedups over serial implementations of benchmark kernels by
19.1% compared to LLVM OpenMP, by 31.0% compared to
GNU OpenMP, by 20.2% compared to Intel OpenMP, by
33.2% compared to X-OpenMP, by 30.1% compared to
oneTBB, by 23.0% compared to Taskflow, and by 21.4%
compared to OpenCilk.

Keywords—parallel programming, fine-grained task
parallelism, simultaneous multithreading (SMT), OpenMP

I. INTRODUCTION
With an increasing amount of data to process and usage

scenarios becoming more complex, modern real-world high-
performance, latency-critical applications and services tend
to extract more parallelism to improve performance. This
trend, however, is not limited to server and high-
performance computing (HPC) applications. Client devices
nowadays tend to have tens of CPU cores that have enough
processing power to run 3D graphics applications, rendering
pipelines, and complex on-device analysis and inference
engines. However, there are several differences between
parallel computing in client and HPC domains.

First, power constraints on client devices are usually
stricter than on HPC systems. In many cases, it is possible to
simultaneously run tasks only on a few of available physical
CPU cores in a client system without causing the device to
overheat. CPU cores that are not utilized at the moment are
put into an idle state reducing power consumption.

Second, there is a difference in the nature of fine-grained
parallel tasks between client and HPC domains. In HPC

Denis Los – Moscow Institute of Physics and Technology (9 Institutskiy
per., Dolgoprudny, Moscow Region, 141700, Russian Federation)

ORCID: https://orcid.org/0009-0009-4500-8106
email: los.da@phystech.edu
Igor Petushkov – Moscow Institute of Physics and Technology (9

Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russian
Federation)

domain, computations are usually divided into a big number
of parallel tasks to achieve the highest performance. The
spawned tasks are distributed across hundreds and thousands
of CPU cores. Processing of large input data or modeling of
complex multi-component systems tend to be the primary
reasons for such large-scale computations in HPC domain.
In client systems, a granularity of input user data is usually
much smaller. Standard algorithms and operations on data
structures, that are performed on a large scale in HPC
systems, are applied to smaller inputs in client applications.
With smaller data inputs, the same granularity of tasks could
be observed by dividing the work into 2-10 independent
parts rather than thousands.

Because of the stricter power constraints on client
devices, an application of simultaneous multithreading
(SMT) technology could help to increase a level of achieved
parallelization. Simultaneous multithreading technology [1]
allows to simultaneously execute instructions from multiple
threads on the same physical core. Since a single thread
might not fully utilize all the available resources of a CPU
core due to stalls caused by events such as branch
mispredictions and cache misses, running additional threads
could help to improve an overall utilization of a CPU core.
Most of the available commercial general-purpose
processors supporting SMT implement it with 2 logical
threads per 1 physical core. For instance, on x86-64
processors, Intel implements SMT technology under the
name of Hyper-Threading (HT) [2], [3] supporting two
logical threads per core.

The reason why SMT technology could help to parallelize
applications on power-constrained client systems is that
activating another physical core and scheduling a task on it
consumes more power than running the task in a different
logical thread on the same physical core [4]. Obviously, in
most cases, using another physical core to run a parallel task
is more performant [5], [6]. However, with a constrained
power budget, it might not be possible leaving the utilization
of SMT technology the only option to boost performance
through parallelization.

Moreover, using the same physical core to run a task
through SMT could help to support parallel tasks of finer
granularity [7], [8]. Communication between threads is
usually done through shared memory with mechanisms such
as atomic operations providing synchronization. Hence,
passing data through lower private levels of cache hierarchy
in the same physical CPU core could reduce an overhead for
scheduling parallel tasks [9]. Furthermore, there have been
many works introducing and exploring hardware
optimizations to reduce task scheduling and synchronization

Exploring Fine-grained Task Parallelism on
Simultaneous Multithreading Cores

Denis Los, Igor Petushkov

144

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

overheads on SMT cores [8], [10], [11].

Thus, in this paper, we focus on fine-grained tasking
targeting power-constrained simultaneous multithreading
CPU cores in client systems. In real-world applications,
parallel computing is usually enabled through parallel
programming frameworks that provide a programming
interface and a runtime.

Therefore, we make the following main contributions:
1) We conduct performance analysis of fine-grained

tasking in state-of-the-art shared-memory parallel
programming frameworks on CPU simultaneous
multithreading cores using real-world application
kernels.

2) We introduce Relic: a simple specialized software-only
task-parallel programming framework targeted towards
enabling extremely fine-grained task parallelism on
SMT cores. We show that through specialization,
restrictions, and simplicity in design, we could achieve
significant performance speedup compared to modern
state-of-the-art parallel programming frameworks.

II. RELATED WORK
There have been many parallel programming frameworks
proposed and developed throughout the years.

OpenMP [12], [13] is a standard API for shared-memory
parallel programming in C/C++ and Fortran. State-of-the-art
implementations of OpenMP include LLVM OpenMP [14],
GNU OpenMP [15], and Intel OpenMP. X-OpenMP [16]
and BOLT OpenMP [17] are more recent implementations
of OpenMP introducing several optimizations to increase
performance. OpenMP API allows limiting a number of
worker threads and setting their thread affinity, hence, it
could be used as a parallel framework to enable fine-grained
tasking on SMT cores.

Many native parallel frameworks exist for C/C++
programming languages. The list includes Intel oneAPI
Thread Building Blocks (oneTBB) [18], Taskflow [19], and
Fastflow [20] frameworks, in which it is possible to enable
fine-grained tasking on simultaneous multithreading cores.

To enable parallel programming, many solutions
introduce new constructs into programming languages and
require modifications to compilers. For example, OpenCilk
[21] enables task-parallel programming through C/C++
language extensions. OmpSs-2 [22] introduces OpenMP-like
code annotations and provides a compiler based on LLVM.
Charm++ [23] adds additional functionality on top of C++
programming language. However, since large-scale client
systems and applications tend to consist of many libraries
and modules, using non-standard language extensions and
runtimes might be challenging in real-world scenarios.

Previously, many researchers have conducted comparative
performance analyses of shared-memory parallel programing
frameworks, including analysis on fine-grained tasks [16],
[19], [24]–[33]. Furthermore, there have been many works
analyzing performance and power efficiency of parallel
computing with simultaneous multithreading [5], [6], [34]–
[43]. However, the scope of work on fine-grained tasking
specifically on SMT cores is very limited. Most of the
related studies either focus on coarse-grained or medium-

grained parallelism on SMT cores or fine-grained tasks that
are spawned in large numbers from parallelizing heavy
workloads, and thus are also scheduled on SMT cores.
Moreover, to the best of our knowledge, there have not been
works that conduct performance analysis of multiple state-
of-the-art parallel programming frameworks on SMT cores
using fine-grained tasks that come from workloads with
small input datasets.

In [34], [40], [41], and [43], using NAS Parallel
Benchmarks [44], performance evaluations are done for
parallel computing on x86 CPU cores with hyper-threading.
However, the analysis is limited to OpenMP and coarse-
grained application kernels. In [39], performance analysis of
tasking on SMT cores is also conducted based on NAS
Parallel Benchmarks with large inputs, however, explicit
threading is used instead of OpenMP. Performance and
power efficiency of x86-64 Intel processors with hyper-
threading is explored in [38] using SPEC OMP [45] and
SPEC CPU2006 [46] benchmarks with standard reference
inputs. Acceleration of applications from different domains
using SMT technology is studied in [5], [6], [35]–[37], and
[42], but the focus is also on the coarse-grained parallelism.

Modern state-of-the-art task-parallel frameworks such as
OpenMP, Intel oneAPI Thread Building Blocks, OpenCilk,
and Taskflow do not provide specialized constructs or
interfaces that could be used to reduce task handling
overheads and enable extremely fine-grained tasking
specifically on simultaneous multithreading cores. However,
mechanisms that could be utilized to reduce task handling
overheads on SMT cores have been studied in previous
works.

SMT technology does not only allow to speedup
applications through parallelization but also to use other
logical threads of a physical core as helper threads [47].
Helper threads could be used to speculatively prefetch data
for the main thread or precompute conditions for hard-to-
predict branches [39], [47]. A lot of the techniques reducing
task handling and synchronization overheads have been
discussed primarily in the context of the helper thread
scenario. The techniques that enable extremely fine-grained
tasking can be either hardware-accelerated [8], [10], [11],
[48]–[50] or software-only [16], [39], [51], [52].

Some of the software-only techniques are not limited to
the usage on SMT cores and have already been utilized in
state-of-the-art task-parallel frameworks, such as X-
OpenMP, to reduce task handling overheads [16]. For
example, in [16] and [39], different implementations of
synchronization primitives and worker thread suspension
mechanisms are studied to enable fine-grained tasking.

Furthermore, several works introduce novel hardware-
accelerated general parallel computing models and
microarchitectures to enable extremely fine-grained tasking
and speculative parallelism beyond simultaneous
multithreading cores [53]–[55].

Despite the large scope of work on hardware-accelerated
parallel computing models and task handling optimizations,
almost none of them are supported in current commercially
available processors with simultaneous multithreading [39].
To enable fine-grained tasking in applications,

145

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

aforementioned software-only parallel programming
frameworks are used in both client devices and HPC
systems. Even though, several software-only mechanisms
that could help to enable extremely fine-grained tasking
specifically on SMT cores had been previously researched,
to the best of knowledge, there were not any studies
conducted highlighting achievable performance speedups
over popular existing software-only task-parallel
frameworks. Hence, in this paper, we introduce a specialized
task-parallel framework utilizing software-only techniques to
enable extremely fine-grained parallelism on SMT cores and
demonstrate significant performance speedups over modern
state-of-the-art general parallel programming frameworks.

III. METHODOLOGY
For all performance evaluations, we use a computer with
Intel Core i7-8700 @ 3.20 GHz x86-64 processor featuring
6 physical CPU cores with 2 logical threads per each core.
The system is Ubuntu 22.04 with Linux 5.15 kernel and
glibc 2.35.

We evaluate four state-of-the-art OpenMP
implementations: LLVM OpenMP from LLVM 18.1.2,
GNU OpenMP from GCC 13.2, Intel OpenMP from Intel
oneAPI Base Toolkit 2024.0, and X-OpenMP. We ported
the original X-OpenMP implementation from LLVM 11 to
18.1.2. We also evaluate Intel oneAPI Thread Building
Blocks (oneTBB) from the 2021.11 release, OpenCilk from
the 2.1 release, and Taskflow v3.7.0 parallel programming
system.

For OpenMP implementations, we use #pragma task and
#pragma taskwait directives to submit a task and wait for it
to finish. We use the task_group class and its methods with
oneTBB. In Taskflow parallel programing system, we rely
on asynchronous tasking. For OpenCilk, we use cilk_spawn
and cilk_sync standard calls.

Benchmarks and investigated parallel runtimes are
compiled with LLVM 18.1.2 Clang and -O3 optimization
options. However, we use GCC 13.2 compiler to evaluate
GNU OpenMP implementation since it is not compatible
with LLVM. Moreover, OpenCilk 2.1 is based on LLVM
16.0.6. We use LLVM’s libc++ standard library
implementation from LLVM 18.1.2 as the default for all
cases.

In order to conduct performance analysis on SMT core,
we limit a number of worker threads to 2 for each runtime
and bind them to the same physical CPU core.

IV. BENCHMARKS
We focus on evaluating performance of parallel runtimes
and frameworks enabling fine-grained tasking on SMT
cores. Many previous studies have showed that performance
gains from SMT technology greatly depend on applications
[38], [39], [56]. However, since, in general, parallel
memory-intensive tasks with complex memory access
patterns are more likely to benefit from running in logical
threads of a SMT core [39], we primarily use real-world
fine-grained memory-intensive application kernels for
performance evaluation.

A. Graph algorithms
Graph algorithms are standard building blocks used in many
client applications. We choose betweenness centrality (BC),
breadth-first search (BFS), connected components (CC),
page ranking (PR), single-source shortest paths (SSSP), and
triangle counting (TC) graph kernels for performance
evaluation. We take single-threaded high-performance
implementations of these graph kernels from GAP
Benchmark Suite [57]. For the connected components graph
kernel, we use the implementation based on Shiloach-
Vishkin algorithm [58], since it shows better performance on
fine-grained input graphs.

In order to evaluate performance on SMT cores, we run
two instances of the same graph kernel in parallel, binding
them to different logical threads of a physical core. Each
instance operates on the same input graph. Basically, we
generate two identical graphs and pass them to graph kernel
instances. The tasks are scheduled using a parallel runtime
under investigation. In the serial mode, we run two instances
of a graph kernel in a single thread.

We use a generated Kronecker graph with 32 nodes and
157 undirected edges for a degree of 4 as an input for all
graph kernels. With this generated graph used as an input, a
single task instance takes 1.1 microseconds for the BC graph
kernel, 0.5 microseconds for the BFS kernel, and 0.4
microseconds for the CC kernel. For PR, SSSP, and TC
graph kernels, task instances take 4.3 microseconds, 6.4
microseconds, and 1.3 microseconds to compute,
respectively. Since we use fine-grained tasks, we repeat the
experiments for 105 iterations and average the results to
improve stability of performance measurements.

B. JSON parsing
JavaScript Object Notation (JSON) is a standard format that
is frequently used to transmit data between client
applications and web servers. Hence, parsing of received
JSON files in parallel could improve performance of client
applications.

To conduct performance evaluation for JSON parsing
scenario, we use RapidJSON library [59]. RapidJSON is a
fast C++ library for parsing and generating JSON files. As
an input file, we use a small sample JSON file that describes
a widget and is available from [60]. We run two tasks both
parsing this JSON file loaded into a memory buffer. Each
task has its own copy of the memory buffer with the loaded
file content. With the selected JSON file as an input, a single
JSON parsing task takes 1.1 microseconds to complete in
our testing environment. We bind each task to different
logical threads on the same SMT physical core. However, in
the serial mode, we run these two JSON parsing tasks in the
same thread. We run all the experiments for 105 iterations
and average the results.

V. PERFORMANCE ANALYSIS OF STATE-OF-THE-ART
PROGRAMMING FRAMEWORKS

We conduct performance analysis of the state-of-the-art
task-parallel frameworks using aforementioned real-world
fine-grained application kernels consisting of graph
algorithms and JSON parsing with small inputs. In Fig. 1,

146

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

performance speedups over serial implementations are

presented for each of the investigated parallel frameworks.
LLVM OpenMP shows the best performance speedup not

only among different OpenMP implementations, but among
all of the investigated frameworks. Using the geometric
mean to average the results across benchmarks and taking
into account performance degradations on individual
application kernels, LLVM OpenMP shows 13.9%
performance speedup over serial implementations, while
Intel OpenMP, Taskflow, and OpenCilk show 11.3%,
11.8%, and 12.6% speedups, respectively. However,
averaging across all the application kernels, X-OpenMP,
GNU OpenMP, and oneTBB frameworks show 6.7%,
17.7%, and 1.9% performance degradations, respectively.

All the frameworks achieve performance speedups on the
PR and SSSP benchmark kernels, the ones with the highest
granularities. Moreover, on the triangle counting graph
kernel, GNU OpenMP is the only one that results in
performance degradation. However, only Taskflow and
OpenCilk are able to achieve performance speedups on the
BC graph kernel, while none of the parallel frameworks
could successfully parallelize the benchmark using breath-
first search algorithm. Furthermore, among the investigated
parallel frameworks, only LLVM-based OpenMP
implementations show increase in performance on the
connected components graph kernel. JSON parsing
benchmark is successfully parallelized with all the
investigated OpenMP implementations and OpenCilk
parallel framework.

VI. RELIC: A SPECIALIZED FRAMEWORK FOR FINE-GRAINED
TASKING ON SMT CORES

We introduce Relic, a specialized framework for C and C++
programming languages to enable extremely fine-grained
task parallelism on SMT cores.

A. Task scheduling

State-of-the-art shared-memory parallel programming
frameworks such as oneTBB, OpenCilk, and OpenMP
implementations tend to use advanced work-stealing
algorithms to efficiently distribute tasks across tens and
hundreds of CPU cores. However, a parallel programming
framework that is specialized to the usage on a SMT core
needs to distribute tasks only among available logical
threads. In most cases, there are only two logical threads on
a SMT core. Hence, in this paper, we consider only the case
with 2 running logical threads.
 To remove the necessity to implement any complex
scheduling strategies and reduce a task scheduling overhead,
we assign special roles to each of the two threads. One of the
threads is made the main thread, while the other – the
assistant thread. The main thread is one of the primary
application threads created by an application itself or by a
runtime of a general-purpose parallel programming
framework. The assistant thread is created and managed by
Relic task-parallel framework. The main thread is a producer
and the assistant thread is a consumer, meaning that only the
main thread can submit tasks in Relic, while the assistant
thread is the only one allowed to run them. The assistant
thread cannot submit tasks, hence, creating tasks recursively
is not supported in Relic.
 Thus, in Relic, we implement the single-producer single-
consumer pattern. This pattern and its utilization to reduce
task scheduling overheads in parallel runtimes have been
well studied in previous works, for example, in [16] and
[20]. To submit tasks, we use a single-producer single-
consumer (SPSC) lock-free queue, a standard mechanism to
utilize in such scenario. There have been many SPSC queue
implementations proposed throughout the years [61]–[64].
In this paper, we use the SPSC queue implementation
available in Boost C++ libraries [65]. We set a capacity of
the queue to 128 entries.

Figure 1. Performance speedups over serial implementations of application kernels with different state-of-the-art parallel
programming frameworks

147

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

 In Relic framework, a task can be submitted by calling the
submit() function in the main thread passing pointers to a
task routine and its arguments. To wait for the completion of
all currently submitted tasks, the wait() function should be
used in the main thread.
 Relic framework could be used together with a general-
purpose parallel programming framework. Coarse-grained or
medium-grained tasks could be submitted to the main thread
through a general-purpose parallel framework, while further
extremely fine-grained parallelization of these tasks within
the same physical CPU core could be enabled with Relic
framework.

B. Waiting mechanism and OS thread scheduling
If there are no tasks in the SPSC queue, the assistant thread
will wait for the main thread to submit the work. Moreover,
the main thread can wait for the assistant thread to finish
execution of the submitted tasks. These waiting mechanisms
can be implemented in many different ways. However, in
general, there are two distinct approaches: busy-waiting and
thread suspension. With busy-waiting or spinning, a waiting
thread checks for a condition to become true in a loop
consuming CPU cycles. Alternatively, a thread can suspend
the execution and release a CPU core using one the
mechanisms provided by the operating system. There is also
a hybrid approach, in which a thread spins for a short
interval and then suspends its execution.
 Both spinning and thread suspension mechanisms have
been well studied. It is known that spinning tends to show
better performance for short waiting intervals in lightly
contended environments [66]. In our case, we have only two
communicating threads running on the same physical core
and we focus on supporting extremely fine-grained tasks.
Therefore, in Relic, we use busy-waiting in the main and
assistant threads. For x86-64 machines, we use the pause
instruction to make spinning more efficient. In Fig. 2,
pseudocode for the main loop of the assistant thread is
shown.

Figure 2. Pseudocode for the main loop of the assistant

thread
However, in real-world high-performance, latency-critical

client applications, only a part of the system could usually be
parallelized. It means that the assistant thread might end up
waiting in the busy loop for longer durations of time. Hence,
it could make spinning extremely inefficient and degrade
performance of the whole client application. One of the
possible solutions is to use the hybrid approach. However,
with fine-grained tasks, the overhead from awakening the
assistant thread might outweigh performance benefits from
the parallelization.
 In [66], an optimization to mitigate thread awakening
overheads is suggested, however, adopting this technology

directly to our scenario with only one waiting thread is
challenging. In Relic, we use a different approach. Since
detailed profiling is usually conducted for critical
applications, we leave it to application developers to provide
explicit wake-up and sleep hints to the runtime. We provide
wake_up_hint() and sleep_hint() functions for developers to
call some time before and after parallelizable code sections
in applications in order to wake up and suspend the assistant
thread, respectively. This way, we enable a fine-grained
control over the assistant thread in Relic.
 With Relic, we enable fine-grained tasking on SMT cores
and we expect the main and assistant threads to run on the
same physical core. Relic framework will work correctly, if
the threads are scheduled to different physical cores,
however, it is not intended or optimized for such scenario.
We do not implement the CPU pinning algorithms in Relic
and expect users of the framework to set the CPU affinities
for both the main and assistant threads. Either simple static
thread binding schemes or complex dynamic scheduling
strategies could be implemented by application developers
to support all scenarios present in the target applications.

VII. RESULTS
In Fig. 3, performance speedups over serial implementations
of investigated application kernels are presented for Relic
parallel programming framework.
 All of the investigated fine-grained benchmarks are
successfully parallelized with Relic without performance
degradations. Even the benchmark utilizing BFS algorithm is
accelerated by 5.6% using Relic parallel framework. On
average, Relic parallel programming framework shows
42.1% performance speedup over serial implementations.

The best achievable performance speedups over serial
implementations with previously evaluated parallel
programming frameworks are 5.7% for the BC benchmark
kernel with Taskflow, 9.4% for the CC benchmark kernel
with LLVM OpenMP, 66.5% for the PR benchmark kernel
with GNU OpenMP, 55.7% for the SSSP benchmark kernel
with Taskflow, 51.4% for the TC benchmark kernel with
LLVM OpenMP, and 23.5% for the JSON parsing

Figure 3. Performance speedups over serial implementations
of application kernels with Relic framework

148

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

benchmark with OpenCilk. Relic parallel programming
framework increases achievable performance speedups by
30.4%, 30.1%, 14.3%, 21.3%, and 8.6% for the BC, CC,
PR, SSSP, and JSON parsing benchmarks, respectively.
Only for the benchmark using the triangle counting
algorithm, Relic framework shows lower performance
speedup compared to the best one that is achieved using
LLVM OpenMP.
 As we have mentioned before, extensive profiling and
performance analysis are usually conducted for real-world
latency-critical applications. Therefore, performance
degradations from the introduced parallelization for specific
code sections would be discovered and addressed by
reverting back to serial implementations. Thus, in Fig. 4, for
the investigated task-parallel frameworks, performance
speedups over serial implementations are shown without
negative outliers, using the geometric mean to average the
results. In case of the performance degradation on a specific
benchmark kernel, a result for the baseline serial
implementation is used. Hence, Relic parallel programming
framework increases the performance benefits from the
parallelization by 19.1% compared to LLVM OpenMP, by
31.0% compared to GNU OpenMP, by 20.2% compared to
Intel OpenMP, by 33.2% compared to X-OpenMP, by
30.1% compared to oneTBB, by 23.0% compared to
Taskflow, and by 21.4% compared to OpenCilk.

VIII. CONCLUSION
We conduct performance analysis of seven state-of-the-art
shared-memory parallel programming frameworks on a
simultaneous multithreading CPU core using real-world
fine-grained application kernels consisting of graph
algorithms and JSON parsing. We show performance
degradations on several investigated fine-grained tasks with
the existing task-parallel frameworks.
 We introduce Relic, a simple specialized parallel
programming framework enabling extremely fine-grained
task parallelism on simultaneous multithreading cores. With
Relic framework, we demonstrate significant performance
improvements compared to the existing general-purpose
parallel frameworks.

REFERENCES
[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, "Simultaneous

multithreading: maximizing on-chip parallelism," in Proc. 22nd
Annual International Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, 1995, pp. 392-403.

[2] D. T. Marr et al., “Hyper-Threading technology architecture and
microarchitecture,” Intel Technology Journal, vol. 6, no. 1, pp. 4-15,
2002.

[3] D. Koufaty and D. T. Marr, "Hyperthreading technology in the
netburst microarchitecture," IEEE Micro, vol. 23, no. 2, pp. 56-65,
March-April 2003, DOI: 10.1109/MM.2003.1196115.

[4] Y. Zhai, X. Zhang, S. Eranian, L. Tang, and J. Mars, “HaPPy:
hyperthread-aware power profiling dynamically,” in Proc. of the
2014 USENIX Conference on USENIX Annual Technical
Conference, Philadelphia, PA, USA, 2014, pp. 211-218.

[5] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R. Rooholamini, “An
empirical study of hyper-threading in high performance computing
clusters,” Linux HPC Revolution, Article ID 45, 2002.

[6] L. Pons et al., “Effect of hyper-threading in latency-critical
multithreaded cloud applications and utilization analysis of the major
system resources,” Future Gener. Comput. Syst., vol. 131, pp. 194-
208, June 2022.

[7] N. Tuck and D. M. Tullsen, "Initial observations of the simultaneous
multithreading Pentium 4 processor," in 2003 12th International
Conference on Parallel Architectures and Compilation Techniques,
New Orleans, LA, USA, 2003, pp. 26-34, DOI:
10.1109/PACT.2003.1237999.

[8] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy, "Supporting
fine-grained synchronization on a simultaneous multithreading
processor," in Proc. Fifth International Symposium on High-
Performance Computer Architecture, Orlando, FL, USA, 1999, pp.
54-58, DOI: 10.1109/HPCA.1999.744326.

[9] X. Qian, B. Sahelices, and J. Torrellas, "BulkSMT: Designing SMT
processors for atomic-block execution," in IEEE International
Symposium on High-Performance Comp Architecture, New Orleans,
LA, USA, 2012, pp. 1-12, DOI: 10.1109/HPCA.2012.6168952.

[10] N. Anastopoulos and N. Koziris, "Facilitating efficient
synchronization of asymmetric threads on hyper-threaded
processors," in 2008 IEEE International Symposium on Parallel and
Distributed Processing, Miami, FL, USA, 2008, pp. 1-8, DOI:
10.1109/IPDPS.2008.4536358.

[11] J. L. Kihm and D. A. Connors, "Implementation of fine-grained cache
monitoring for improved SMT scheduling," in IEEE International
Conference on Computer Design: VLSI in Computers and
Processors, 2004. ICCD 2004. Proceedings., San Jose, CA, USA,
2004, pp. 326-331, DOI: 10.1109/ICCD.2004.1347941.

[12] L. Dagum and R. Menon, "OpenMP: an industry standard API for
shared-memory programming," IEEE Computational Science and
Engineering, vol. 5, no. 1, pp. 46-55, Jan.-March 1998, DOI:
10.1109/99.660313.

[13] E. Ayguade et al., "The design of OpenMP tasks," IEEE
Transactions on Parallel and Distributed Systems, vol. 20, no. 3, pp.
404-418, March 2009, DOI: 10.1109/TPDS.2008.105.

[14] O. A. R. Board, OpenMP, Support for the OpenMP language, 2024.
[Online]. Available: https://openmp.llvm.org.

[15] G.team, Gomp: An openmp implementation for gcc, 2024. [Online].
Available: https://gcc.gnu.org/projects/gomp.

[16] P. Nookala, K. Chard, I. Raicu, “X-OpenMP — eXtreme fine-grained
tasking using lock-less work stealing,” Future Generation Computer
Systems, vol. 159, pp. 444-458, 2024, DOI:
10.1016/j.future.2024.05.019.

[17] S. Iwasaki, A. Amer, K. Taura, S. Seo and P. Balaji, "BOLT:
optimizing OpenMP parallel regions with user-level threads," in 2019
28th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Seattle, WA, USA, 2019, pp. 29-
42, DOI: 10.1109/PACT.2019.00011.

[18] A. Kukanov, M. J. Voss, “The foundations for scalable multi-core
software in Intel Threading Building Blocks.,” Intel Technology
Journal, vol. 11, no. 4, p. 309, 2007.

[19] T. -W. Huang, Y. Lin, C. -X. Lin, G. Guo, and M. D. F. Wong, "Cpp-
Taskflow: a general-purpose parallel task programming system at
scale," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 8, pp. 1687-1700, Aug. 2021, DOI:
10.1109/TCAD.2020.3025075.

[20] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati, “Fastflow:
high-Level and efficient streaming on multicore,” Programming

Figure 4. Average performance speedups across application
kernels without negative outliers with different parallel

programming frameworks

149

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

Multicore and Many-Core Computing Systems, Wiley-Blackwell,
2017, pp. 261-280, DOI: 10.1002/9781119332015.ch13.

[21] T. B. Schardl and I-T. A. Lee, “OpenCilk: a modular and extensible
software infrastructure for fast task-parallel code”, in Proc. of the
28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, Montreal, QC, Canada, 2024, pp. 189-203,
DOI: 10.1145/3572848.3577509.

[22] Barcelona Supercomputing Center, OmpSs-2 Specification, 2024.
[Online]. Available: https://pm.bsc.es/ftp/ompss-2/doc/spec.

[23] L.V. Kale and S. Krishnan, “CHARM++: a portable concurrent
object oriented system based on C++”, in Proc. of the Eighth Annual
Conference on Object-Oriented Programming Systems, Languages,
and Applications, Washington, D.C., USA, 1993, pp. 91-108, DOI:
10.1145/165854.165874.

[24] A. Podobas, M. Brorsson, and K.-F. Faxén, “A comparison of some
recent task-based parallel programming models,” in 3rd workshop on
programmability issues for multi-core computers, Pisa, Italy, 2010.

[25] G.W. Price, D. K. Lowenthal, “A comparative analysis of fine-grain
threads packages,” Journal of Parallel and Distributed Computing,
vol. 63, no. 11, pp. 1050-1063, 2003.

[26] K. Wheeler, D. Stark, and R. Murphy, “A comparative critical
analysis of modern task-parallel runtimes,” Sandia National
Laboratories, Albuquerque, New Mexico, USA, SAND2012-10594,
Dec. 2012.

[27] A. Podobas, M. Brorsson, and K.-F. Faxen, “A comparative
performance study of common and popular task-centric programming
frameworks,” Concurr. Comput.: Pract. Exper., vol. 27, no. 1, pp. 1-
28, Jan. 2015, DOI: 10.1002/cpe.3186.

[28] G. Zeng, “Performance analysis of parallel programming models for
C++,” J. Phys.: Conf. Ser., vol. 2646, 2023, DOI: 10.1088/1742-
6596/2646/1/012027.

[29] E. Ajkunic, H. Fatkic, E. Omerovic, K. Talic, and N. Nosovic, "A
comparison of five parallel programming models for C++," in 2012
Proceedings of the 35th International Convention MIPRO, Opatija,
Croatia, 2012, pp. 1780-1784.

[30] A. Leist, A. Gilman, “A comparative analysis of parallel
programming models for C++,” in Proc. of The Ninth International
Multi-Conference on Computing in the Global Information
Technology, Seville, Spain, 2014, pp. 121-127.

[31] C. D. Krieger, M. M. Strout, J. Roelofs, and A. Bajwa, "Executing
optimized irregular applications using task graphs within existing
parallel models," in 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, Salt Lake City, UT,
USA, 2012, pp. 261-268, DOI: 10.1109/SC.Companion.2012.43.

[32] L.M. Sanchez, J. Fernandez, R. Sotomayor, S. Escolar, J.D. Garcia,
“A comparative study and evaluation of parallel programming models
for shared-memory parallel architectures,” New Gener. Comput., vol.
31, pp. 139–161, 2013, DOI: 10.1007/s00354-013-0301-5.

[33] S. Salehian, Jiawen Liu, and Yonghong Yan, "Comparison of
Threading Programming Models," in 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Lake Buena Vista, FL, USA, 2017, pp. 766-774, DOI:
10.1109/IPDPSW.2017.141.

[34] W. Heirman, T. E. Carlson, K. Van Craeynest, I. Hur, A. Jaleel, L.
Eeckhout, “Automatic SMT threading for OpenMP applications on
the Intel Xeon Phi co-processor,” in Proc. of the 4th International
Workshop on Runtime and Operating Systems for Supercomputers,
Munich, Germany, 2014, Article 7, DOI: 10.1145/2612262.2612268

[35] X. Tian, Y.-K. Chen, M. Girkar, S. Ge, R. Lienhart and S. Shah,
"Exploring the use of Hyper-Threading technology for multimedia
applications with Intel OpenMP compiler," in Proc. International
Parallel and Distributed Processing Symposium, Nice, France, 2003,
DOI: 10.1109/IPDPS.2003.1213118.

[36] Y.-K. Chen, M. Holliman, E. Debes, S. Zheltov, A. Knyazev, S.
Bratanov, R. Belenov, and I. Santos, “Media applications on Hyper-
Threading technology,” Intel Technology Journal, vol. 6, no. 1, pp.
47-57, 2002.

[37] Y.-K. Chen, M. Holliman, and E. Debes, "Video applications on
hyper-threading technology," in Proc. IEEE International
Conference on Multimedia and Expo, Lausanne, Switzerland, 2002,
pp. 193-196, vol. 2, DOI: 10.1109/ICME.2002.1035546.

[38] R. Schöne, D. Hackenberg, and D. Molka, “Simultaneous
multithreading on x86_64 systems: an energy efficiency evaluation,”
in Proc. of the 4th Workshop on Power-Aware Computing and
Systems, Cascais, Portugal, 2011, Article 10, DOI:
10.1145/2039252.2039262.

[39] E. Athanasaki, N. Anastopoulos, K. Kourtis, N. Koziris, “Exploring
the performance limits of simultaneous multithreading for memory
intensive applications,” The Journal of Supercomputing, vol. 44, pp.
64-97, 2008, DOI: 10.1007/s11227-007-0149-x.

[40] E. Athanasaki, N. Anastopoulos, K. Kourtis, N. Koziris, “Exploring
the capacity of a modern SMT architecture to deliver high scientific
application performance,” in Proc. of the 2006 International
Conference on High Performance Computing and Communications,
Munich, Germany, 2006, pp. 180-189, DOI: 10.1007/11847366_19.

[41] R. E. Grant and A. Afsahi, "A Comprehensive Analysis of OpenMP
Applications on Dual-Core Intel Xeon SMPs," in 2007 IEEE
International Parallel and Distributed Processing Symposium, Long
Beach, CA, USA, 2007, pp. 1-8, DOI: 10.1109/IPDPS.2007.370682.

[42] S. Ivanikovas and G. Dzemyda, “Evaluation of the hyper ‐threading
technology for heat conduction ‐type problems,” Mathematical
Modeling and Analysis, vol. 12, no. 4, pp. 459-468, Dec. 2007.

[43] M. Curtis-Maury, X. Ding, C.D. Antonopoulos, D.S. Nikolopoulos,
“An evaluation of OpenMP on current and emerging
multithreaded/multicore processors,” in Proc. of the First
International Workshop on OpenMP Shared Memory Parallel
Programming, Eugene, OR, USA, 2005, pp. 133-144.

[44] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of
NAS Parallel Benchmarks and its performance,” NASA Ames
Research Center, Technical Report, Oct. 1999.

[45] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones,
and B. Parady, “Specomp: A new benchmark suite for measuring
parallel computer performance,” in Proc. of the International
Workshop on OpenMP Applications and Tools: OpenMP Shared
Memory Parallel Programming, London, UK, 2001, pp. 1-10

[46] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1-17, Sep. 2006, DOI:
10.1145/1186736.1186737.

[47] J. D. Collins et al., "Speculative precomputation: long-range
prefetching of delinquent loads," in Proc. 28th Annual International
Symposium on Computer Architecture, Gothenburg, Sweden, 2001,
pp. 14-25, DOI: 10.1109/ISCA.2001.937427.

[48] A. Gontmakher, A. Mendelson, A. Schuster and G. Shklover,
"Speculative synchronization and thread management for fine
granularity threads," in The Twelfth International Symposium on
High-Performance Computer Architecture, 2006., Austin, TX, USA,
2006, pp. 278-287, DOI: 10.1109/HPCA.2006.1598136.

[49] J. Redstone, S. Eggers and H. Levy, "Mini-threads: increasing TLP
on small-scale SMT processors," in The Ninth International
Symposium on High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings., Anaheim, CA, USA, 2003, pp. 19-30,
DOI: 10.1109/HPCA.2003.1183521.

[50] M. Abeydeera, S. Subramanian, M. C. Jeffrey, J. Emer and D.
Sanchez, "SAM: Optimizing Multithreaded Cores for Speculative
Parallelism," in 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Portland, OR,
USA, 2017, pp. 64-78, DOI: 10.1109/PACT.2017.37.

[51] K.-F. Faxén, “Wool-a work stealing library,” SIGARCH Comput.
Archit. News, vol. 36, no. 5, pp. 93-100, Dec. 2008, DOI:
10.1145/1556444.1556457.

[52] R. Rangan et al., “Speculative Decoupled Software Pipelining,” in
Proc. of the 16th International Conference on Parallel Architecture
and Compilation Techniques, Brasov, Romania, 2007, pp. 49-59.

[53] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer and D. Sanchez, "A
scalable architecture for ordered parallelism," in Proc. of the 48th
Annual IEEE/ACM International Symposium on Microarchitecture,
Waikiki, HI, USA, 2015, pp. 228-241, DOI:
10.1145/2830772.2830777.

[54] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer and D. Sanchez,
"Unlocking Ordered Parallelism with the Swarm Architecture," IEEE
Micro, vol. 36, no. 3, pp. 105-117, May-June 2016, DOI:
10.1109/MM.2016.12.

[55] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: architectural
support for fine-grained parallelism on chip multiprocessors,” in
Proc. of the 34th Annual International Symposium on Computer
Architecture, San Diego, California, USA, 2007, pp. 162-173, DOI:
10.1145/1250662.1250683.

[56] S. Saini, A. Naraikin, R. Biswas, D. Barkai and T. Sandstrom, "Early
performance evaluation of a "Nehalem" cluster using scientific and
engineering applications," in Proc. of the Conference on High
Performance Computing Networking, Storage and Analysis,
Portland, OR, USA, 2009, pp. 1-12, DOI:
10.1145/1654059.1654084.

150

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024

[57] S. Beamer, K. Asanović, D. Patterson, “The GAP benchmark suite,”

arXiv:1508.03619 [cs.DC], 2015.
[58] Y. Shiloach and U. Vishkin, "An o(logn) parallel connectivity

algorithm," Journal of Algorithms, vol. 3, no. 1, pp. 57-67, 1982.
[59] RapidJSON library, 2024. [Online]. Available: https://rapidjson.org.
[60] JSON Example, 2024. [Online]. Available:

https://json.org/example.html.
[61] L. Lamport, “Specifying Concurrent Program Modules,” ACM Trans.

Program. Lang. Syst., vol. 5, no. 2, pp. 190-222, 1983, DOI:
10.1145/69624.357207.

[62] P. P. C. Lee, T. Bu, and G. Chandranmenon, "A lock-free, cache-
efficient multi-core synchronization mechanism for line-rate network
traffic monitoring," in 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA,
2010, pp. 1-12, DOI: 10.1109/IPDPS.2010.5470368.

[63] J. Giacomoni, T. Moseley, and M. Vachharajani, “FastForward for
efficient pipeline parallelism: a cache-optimized concurrent lock-free
queue,” in Proc. of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Salt Lake City,
UT, USA, 2008, pp. 43-52, DOI: 10.1145/1345206.1345215.

[64] J. Wang, K. Zhang, X. Tang, and B. Hua, “B-Queue: Efficient and
Practical Queuing for Fast Core-to-Core Communication,”
Internation Journal of Parallel Programming, vol. 41, pp. 137-159,
2023, DOI: 10.1007/s10766-012-0213-x.

[65] Boost.Lockfree, 2024, [Online]. Available:
https://www.boost.org/doc/libs/1_85_0/doc/html/lockfree.html.

[66] R. Marotta et al., "Mutable locks: Combining the best of spin and
sleep locks," Concurrency and Computation: Practice and
Experience, vol. 32, no. 22, 2020, DOI: 10.1002/cpe.5858.

151

	I. Introduction
	II. Related work
	III. Methodology
	IV. Benchmarks
	A. Graph algorithms
	B. JSON parsing

	V. Performance analysis of state-of-the-art programming frameworks
	VI. Relic: a specialized framework for fine-grained tasking on SMT cores
	A. Task scheduling
	B. Waiting mechanism and OS thread scheduling

	VII. Results
	VIII. Conclusion
	References

