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Abstract—This article examines the methods of accumulating 

in the context of operations of multiplying numbers to arbitrary 
modulo in cryptographic applications. The authors present a 
new approach to data processing using methods accumulating 
to arbitrary modulo, which when encrypting information will 
improve the performance of cryptographic transformation 
operations. The article describes in detail the main methods of 
accumulating to arbitrary modulo, their advantages and 
potential uses in cryptographic applications. The research, 
methodologies and practical solutions presented in the article 
are of interest to specialists in the field of cybersecurity, as well 
as to developers of high-tech software and IS software and 
hardware.  

 
Keywords—modulo addition, accumulating, cybersecurity, 

hardware description language, asynchronous encryption. 

I. INTRODUCTION 
When exchanging information between various objects of 
informatization and information technologies, one of the 
main tasks is to ensure the confidentiality of information that 
has intellectual or economic value for the owner of the 
information and is not common for general use. This problem 
is currently solved by various methods, the most reliable of 
which is the method of cryptographic transformations during 
information exchange [1]. For such purposes, standard 
symmetric and asymmetric encryption algorithms are used. 
Asymmetric algorithms are more complex to calculate and 
implement than symmetric ones [2].  

The RSA (Rivest-Shamir-Adleman) algorithm [4], [5] is 
one of the most widely used public key encryption 
algorithms, which is based on the problems of generating 
prime numbers, multiplying numbers modulo and 
decomposing composite numbers into prime factors. 

Due to the popularity and widespread use of the RSA 
algorithm, a number of elementary attacks are known that 
hinder its use for small cryptographic key lengths [6], [7]. 

To counter such attacks, the length of the RSA 
cryptographic key may be increased, which complicates its 
implementation and leads to a decrease in its speed [8]. 
 
 
 

Article received on May 17, 2024. 
Petrenko Vyacheslav Ivanovich, Head of a Department of the Institute of 

Digital Development of the North Caucasus Federal University, Stavropol, 
Russia (email: vipetrenko@ncfu.ru). 

Kopytov Vladimir Vyacheslavovich, Professor of the Institute of Digital 
Development of the North Caucasus Federal University, Stavropol, Russia 
(email: vkopytov@ncfu.ru). 

Sutormin Matvey Pavlovich, student of the “Information security” 
Training program of the North Caucasus Federal University, Stavropol, 
Russia (email: sutorminp@gmail.com). 
 

The greatest complexity in the implementation of the 
algorithm comes from the operation of multiplying numbers 
modulo other than 2n [9]. Reducing the complexity of 
implementing the operation of multiplying numbers to 
arbitrary modulo is possible by reducing intermediate partial 
products obtained as a result of arbitrary modulo 
multiplication, followed by the operation of accumulating 
these partial products to the same arbitrary modulus. The 
implementation of this method with hardware solutions will 
further improve the performance of cryptographic 
transformation operations. Therefore, the development of an 
effective method of accumulating is an urgent task to increase 
the performance of cryptographic algorithms. 

II. APPLICATION OF MODULO ADDITION IN THE RSA 
ALGORITHM 

The RSA algorithm uses modulo addition to encrypt and 
decrypt data using public and private keys, respectively, as 
part of an arbitrary modulo multiplication operation. 

When encrypting with a public key, the sender takes the 
following steps: 

1. Selects the recipient's public key, which consists of two 
numbers: (e, p), where p is the product of two prime numbers 
b and q, and e is the public key. 

2. Converts the original message M to an integer m, where 
m<p. 

3. Calculates an encrypted message c using the public key 
according to the formula:  
 
 𝑐𝑐 =  𝑚𝑚𝑒𝑒  𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, (1) 
where c is the encrypted message, m is the plaintext, e is the 
public key, p is the modulus. 

4. Sends the encrypted message c. 
When decrypting using a private key, the recipient 

completes the following steps: 
1. Receives the encrypted message c. 
2. Selects a private key, which consists of two numbers: 

(d, p), where d is the private key. 
3. Calculates the integer m using the private key according 

to the formula:  
 

 𝑚𝑚 =  𝑐𝑐𝑑𝑑  𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝. (2) 
 

4. Converts the integer m to the original message M. 
When implementing this algorithm, the main operation is 

the operation of raising numbers to a power modulo the 
corresponding one. Raising a number to a power can be 
thought of as repeatedly multiplying a number by itself and 
then modulo the result. For example, to raise number a to the 
power of n modulo p, one needs to multiply a by itself (n−1) 
times, and then convert the result modulo p. In practice, a 
modulo reduction operation is usually performed after each 
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multiplication operation. Faster algorithms for raising 
numbers to powers are also used, which involve expanding 
the power and performing the corresponding transformations. 
When implementing such algorithms, the operation of 
accumulating modulo p is used as part of the operations of 
exponentiation, which involves finding the remainder when 
dividing the sum of numbers by p. That is, if the sum exceeds 
p, the remainder of the sum divided by p is taken so that it 
remains in the range from 0 to (p−1). Using these two 
concepts, one can effectively represent the operation of 
exponentiation as a sequence of addition and remainder 
operations, which can be useful, for example, when working 
with large numbers used in cryptographic applications. 

III. ACCUMULATING METHODS 
The classic method of constructing modulo 2n accumulators, 
where n is the number capacity, is to add a register to the 
accumulator output and create feedback from the register 
output to the second information inputs of the accumulator. 
The accumulating principle is that the accumulator has one 
input to which a sequence of numbers 𝐴𝐴𝑖𝑖  is supplied and 
these numbers are sequentially summed modulo 2n, forming 
the sum 𝑆𝑆𝑖𝑖: 
 
 𝑆𝑆𝑖𝑖 = (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑛𝑛. (3) 
 

These schemes are widely known and their 
implementation is presented in [10]. However, in a number of 
applications, including cryptographic ones, problems of 
accumulating modulo other than 2n often arise, for example: 

 
 2𝑛𝑛  ±  𝑘𝑘,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 2𝑛𝑛−1 >  𝑘𝑘 ≥  1. (4) 
 

There are known methods for n-bit arbitrary modulo 
addition, used in a modulo accumulator [11], [12]. The main 
idea of these methods is that the integer numbers Аi, 
(i=1, 2, 3...), 0 ≤ 𝐴𝐴𝑖𝑖 < 𝑝𝑝,  arriving at the input of the 
accumulator, are summed clock by clock with the numbers 
Si−1, written in its memory at the previous clock cycle. The 
result of the addition Ai + Si−1 is taken modulo p as follows. If 
(Ai + Si−1) < p, then the usual addition (Ai + Si−1) is performed 
and this sum is the result of Si. 
 If (Ai + Si−1) ≥ р, then the р value is subtracted from the sum 
(Ai + Si−1) and the result Si is the sum (Ai + Si−1) mod р. The 
result is written to the device’s memory and used as the value 
of the number Si−1 at the next clock cycle.   

 
 𝑆𝑆𝑖𝑖  ≡ (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, (𝑖𝑖 = 1, 2, 3 …). (5) 
 

Moreover, 𝑆𝑆𝑖𝑖  is calculated in the following sequence: 
 

 𝑆𝑆𝑖𝑖′ =  𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1, (6) 
 
 𝑆𝑆𝑖𝑖′′ = 𝑆𝑆𝑖𝑖′ − 𝑝𝑝, (7) 
 

 𝑆𝑆𝑖𝑖 =  �
𝑆𝑆𝑖𝑖′, 𝑖𝑖𝑖𝑖 (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) < 𝑝𝑝
𝑆𝑆𝑖𝑖′′, 𝑖𝑖𝑖𝑖 (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) ≥ 𝑝𝑝 , (8) 

where 𝑆𝑆𝑖𝑖 is the value of the sum modulo p at the i clock cycle, 
𝑆𝑆0 = 0. 

This method in [11] is implemented by sequential 
calculation of 𝑆𝑆𝑖𝑖′  and 𝑆𝑆𝑖𝑖′′  by two different adders. The 
determination of 𝑆𝑆𝑖𝑖  is carried out based on the results of 
calculating 𝑆𝑆𝑖𝑖′  and 𝑆𝑆𝑖𝑖′′  in accordance with (8). This 

implementation, firstly, increases the time for generating the 
result, and secondly, leads to inefficient use of equipment, 
since only one adder operates at a time.  

The works [12], [13], [14], [15], [16] propose options for 
parallel calculations of 𝑆𝑆𝑖𝑖′ and 𝑆𝑆𝑖𝑖′′, but this complicates the 
structure of the adder that implements the operation of 
finding 𝑆𝑆𝑖𝑖′′, since it must be implemented as a three-input 
adder. 

Thus, the known hardware implementations of the 
arbitrary modulo accumulating operation either use the 
equipment inefficiently and have a long addition time, or 
have a complex implementation of three-input adders, which 
limits their use when adding sequences with a large amount 
of numbers and large bit capacity. 

In order to increase the efficiency of equipment use and 
improve the speed of adding large sequences of numbers, a 
method of accumulating addition to arbitrary modulo is 
proposed, which helps divide the addition of a sequence of 
numbers into two streams and effectively use the equipment. 
The essence of this method is as follows.  

The input sequence of non-negative integer numbers 
𝐴𝐴𝑖𝑖  (𝑖𝑖 = 1, 2, 3, … ), 0 ≤ 𝐴𝐴𝑖𝑖 < 𝑝𝑝𝑘𝑘 , 𝑘𝑘 = 1, 2  is summed clock 
by clock in two separate streams with the numbers written in 
its memory on previous clock cycles, forming two 
independent output sequences of numbers Sk,i, associated 
respectively with odd and even clock numbers. 
Odd and even output sequences are generated alternately. 
Addition for odd and even number streams can be carried out 
for different moduli p1 и p2, respectively. Let us denote the 
modulo sum for the first (odd) stream of numbers as S1,i and 
for the second (even) stream of numbers as S2,i. Then: 

 
 𝑆𝑆1,𝑖𝑖−1 = (∑ 𝐴𝐴𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝1, (𝑖𝑖 = 1, 3, 5, … ), (9) 
 𝑆𝑆2,𝑖𝑖−1 = (∑ 𝐴𝐴𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2, (𝑖𝑖 = 2, 4, 6, … ). (10) 
 

To implement the proposed method of accumulating, it is 
necessary to add one more memory cell to the known 
implementation options [11]. 

One memory cell at each clock cycle stores input numbers 
Аi with n-bit capacity and output numbers S1,i at the even 
clock cycle and S2,i at the odd clock cycle with n-bit width. 

The second memory cell stores the sum (Аi + S1,i) at the 
even clock cycle and the sum (Аi + S2,i) at the odd clock cycle 
during the next clock cycle. Next, the sum (Аi + Sk,i) is 
reduced modulo pk, where k=1, 2. If the specified sum is 
greater than modulo pk, then this modulus is subtracted from 
it, otherwise the sum without change is sent to the output of 
the device.  

IV. ALGORITHM FOR ACCUMULATING TO ARBITRARY 
MODULO  

The proposed method of accumulating can be implemented 
by the following algorithm, which uses the following 
notation: Ai is an input sequence of non-negative integer 
numbers, consisting of two independent streams of numbers, 
alternating for even i and odd i, integer non-negative moduli 
p1 and p2, over which accumulating is carried out, 
respectively, for the first and second stream of numbers, and 
the values of Ai do not exceed the values of the corresponding 
moduli p1 and p2, S1,i  is accumulating sum modulo p1, S2,i  is 
accumulating sum modulo p2. 
1) Start. 
2) Input M. 
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3) Assign 𝑖𝑖 = 1; 𝑘𝑘 = 1; 𝑆𝑆1,0 = 0, 𝑆𝑆2,0 = 0. 
4) Input 𝐴𝐴𝑖𝑖. 
5) Assign 𝑆𝑆𝑘𝑘,𝑖𝑖

′ = 𝐴𝐴𝑖𝑖 +  𝑆𝑆𝑘𝑘,𝑖𝑖−1. 
6) Assign 𝑖𝑖 = 𝑖𝑖 + 1. 
7) Assign 𝑆𝑆𝑘𝑘,𝑖𝑖

′′ = 𝑆𝑆𝑘𝑘,𝑖𝑖−1
′ − 𝑃𝑘𝑘. 

8) If 𝑆𝑆𝑘𝑘,𝑖𝑖
′′ < 0,  then assign 𝑆𝑆𝑘𝑘,𝑖𝑖 =  𝑆𝑆𝑘𝑘,𝑖𝑖

′′ ,  otherwise assign 
𝑆𝑆𝑘𝑘,𝑖𝑖 = 𝑆𝑆𝑘𝑘,𝑖𝑖−1

′ . 
9) Output 𝑆𝑆𝑘𝑘,𝑖𝑖. 
10) If 𝑖𝑖 > 𝑀𝑀, then go to step 13. 
11) Assign 𝑘𝑘 = 2 − 𝑖𝑖 mod 2. 
12) Go to step 4. 
13) End.  

V. IMPLEMENTATION OF THE ACCUMULATING ALGORITHM 
IN THE VERILOG HDL HARDWARE DESCRIPTION LANGUAGE  

The proposed method of accumulating to arbitrary modulo 
can be implemented using a hardware description language, 
which is used for modeling and designing digital systems 
[17], [18]. An accumulator with two channels for n=8 
numbers, implementing the parallel addition method, 
performed in Verilog HDL [19], is presented in Fig. 1.  

The software module consists of blocks describing the 
inputs and outputs of the modulo accumulator itself, 
declaring variables and describing the inputs and outputs of 
two registers, two adders and a multiplexer. The software 
module uses libraries implemented in a standard way that 
describe adders, registers and a multiplexer. First, libraries 
with adders (“adder.v”), registers (“registrs.v”), multiplexer 
(“mux.v”), in which the corresponding moduli are described, 
are imported. The implementation of such libraries is 
standard and is not shown in this listing. The 
“modulo_adder” specifies the inputs (input_a, clk, P) and 
outputs (mux_out) of the device. The 8-bit wire connections 
are then declared, which are described in more detail in the 
code comments. 

The following snippet creates objects and configures the 
device's inputs and outputs: 
− reg_16_bit is a 16-bit register, input_a is the first 

information input of the register, input_b is the second 
information input of the register, clk is the clock input and 
corresponding outputs out_a, out_b; 
− adder_8 is the 8-bit adder; 
− a and b are adder inputs, out and carry are outputs; 
− reg9Bit is the 9-bit register;  
− data_in is the data input; 
− clk is the clock input and two outputs data_out_8bit 

(8-bit), data_out_1bit (1-bit); 
− adder_9 is the 9-bit adder; 
− a and b are 9-bit adder inputs and outputs out, cin, 

carry; 
− multiplexer2to1 is the multiplexer,  
− input_from_sum is the input connected to the adder; 
− input_from_reg is the input connected to the register, 

control is the control input; 
− out is the information output. 
To check the correct operation of the accumulating 

module, a testing module was developed, the code of which is 
presented in Fig. 2. At the beginning of this module, the 
modulo accumulator is imported. 

 
Fig. 1 – Modulo accumulator in Verilog HDL for number bit 

width n=8 

Next, the variables are created: clk is the clock signal, 
input_a is the 8-bit input of the device, P_reverse is the input 
for the inverse code of the module, mux_out is the output of 
the multiplexer. Then the tb(testbench) module is created, in 
which testing will take place. In the next block, a 
modulo_adder object is created, which was shown in Fig. 1, 
and its inputs and outputs are configured. Next, the period for 
the clock signal and a description of the alternation of the 
reverse module P_reverse are introduced. The initialization 
of P is described, as well as uploading the simulation to the 
tb.vcd file and entering the first two numbers. The figure 
shows only 2 input_a numbers, but 11 numbers will be 
entered (6 for the 1st module and 5 for the 2nd module).  

Direct and inverse codes p1, p2 are defined: 
 
𝑝𝑝1 =  23110  =  111001112  =  E716, 
𝑝𝑝1��� = 000110002 =  1816, 
𝑝𝑝2  =  24910  =  111110012  =  F916, 
𝑝𝑝2��� = 000001102 =  0616. 
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A simulation of the module’s operation is given in Fig. 3, 
which shows the states of the inputs and outputs of the main 
elements of the accumulator at each clock. 

To demonstrate the operation, a sequence of 11 numbers is 
defined as initial data, which can be divided into two streams. 
In this case, the following numbers, presented in hexadecimal 
form, are summed modulo p1: 33, 67, 5E, 76, 70, 77 (odd 
positions in line input_a). Numbers 6A, 53, 5E, 2A, 2E are 
summed modulo p2 (even positions in the line input_a). 

The line tb.clk represents clock pulses. adder_8.out 
denotes the result of the sum 𝑆𝑆𝑘𝑘,𝑖𝑖

′ = 𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑘𝑘,𝑖𝑖−1  
on the 8-bit adder; adder_9.out denotes the difference result 
𝑆𝑆𝑘𝑘,𝑖𝑖
′′ = (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑘𝑘,𝑖𝑖−1 − 𝑃𝑘𝑘)  on the 9-bit adder; p_reverse 

denotes the inverse code of modulo p; control denotes the 
control input of the multiplexer; mux_out denotes the 
information outputs of the multiplexer. 

By direct verification we are convinced that 
(33+67+5E+76+70) mod E7 = 1DE mod E7 = 10, and 
(6A+53+5E+2A+2E) mod F9 = 173 mod F9 = 7A, which 
confirms the correctness of the implementation of the 
software module. We can observe these values in the MUX 5 
column, at 10 and 11 clock cycles. 

 

 
Fig. 2 – Testing module 

 
 

 
 

Fig. 3 – Simulation of the operation of a two-channel modulo adder 

VI. HARDWARE IMPLEMENTATION OF THE ALGORITHM OF 
ACCUMULATING  

The hardware implementation of the proposed method of 
accumulating on logical modules of the type [20] and [21] is 
presented in Fig. 4. 

The accumulator to arbitrary modulo contains 2n-bit and 
(n+1)-bit registers 1 and 3, respectively, where n is the bit 
width of the numbers being processed, n-bit and (n+1)-bit 
adders 2 and 4, multiplexer 5, first 6 and second 8 
information inputs of the device, information outputs 9 of the 
device and clock input 7 of the device. 

In the initial state, 2n-bit and (n+1)-bit registers 1 and 3 are 
zeroed. 

Clock input 7 of the device receives clock pulses 
i=1, 2, 3, …, . Numbers Ai are supplied to the first 
information inputs 6 of the device with each clock pulse. The 
inverse code of module p1 is supplied to the second 
information inputs 8 of the device on even clock cycles, and 
the inverse code of module p2 is supplied on odd clock cycles 
(starting from 3). The sum S1,i−1 modulo p1 for numbers Ai 
(i=2, 4, 6,…) and the sum S2,i−1 modulo p2 for numbers Ai 
(i=1, 3, 5, …) is taken from the information 9 device outputs. 
In this case  

 
0 ≤ Ai (i=2, 4, 6, …) < p1,  
0 ≤ Ai (i=1, 3, 5, …) < p2.  
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On the first clock cycle of the device, the first n-bit number A1 
is written to the 2n-bit register 1. Moreover, it is written in the 
lowest n bits, and the highest n bits are reset to zero. From the 
lower n bits of the information outputs of the 2n-bit register 1, 
the number A1 is supplied to the first information inputs of the 
n-bit adder 2, and the second information inputs receive a 
zero value from the highest n bits of the information outputs 
of the 2n-bit register 1. At the information outputs of n-bit 
adder 2, the value of the sum A1 + S1,0 is formed. Since the 
value of S1,0 is 0 at the first clock cycle, the value A1 is 
generated at the information outputs of n-bit adder 2. This 
value is then written to (n+1)-bit register 3 on the next clock 
cycle. 

Ai

1 2 43

Pi

6

7

8
5 9

"1"

"1"

Si

 
Fig. 4 – Hardware implementation of the accumulator to 

arbitrary modulo  

 
On the second clock cycle of the device, the second n-bit 

number A2 is written to the 2n-bit register 1, and the value of 
A1 from the outputs of the n-bit adder 2 is written to the (n+1) 
bits of the (n+1)-bit register 3. The number A2 is written to the 
lower n bits of the 2n-bit register 1, while a zero value is 
written to the highest n bits. From the lower n bits of the 
information outputs of the 2n-bit register 1, the number A2 is 
supplied to the first information inputs of the n-bit adder 2, 
and the second information inputs receive a zero value from 
the highest n bits of the information outputs of the 2n-bit 
register 1. At the information outputs of n-bit adder 2, the 
sum value (A2 + S2,0) is formed. Since in the second cycle the 
value of S2,0 is equal to 0, the value A2 is formed at the 
information outputs of the n-bit adder 2. In this case, the first 
information inputs of the (n+1)-bit adder 4 will receive the 
value A1 from the information outputs of the (n+1)-bit 
register 3, and the low-order n bits of the second information 
inputs will receive the n-bit inverse code of the modulus 𝑝𝑝1, 
which is complemented to the (n+1)th bit by the value of a 
logical one arriving at the (n+1)th bit of the second 
information inputs of the (n+1)-bit adder 4. Since a logical 
one signal is received at the carry input of the (n+1)-bit adder 
4, this adder essentially performs a subtraction 
operation �𝐴𝐴1 + 𝑆𝑆1,0� − 𝑝𝑝1. 

On the following cycles, the device operates in a similar 
way. 

If the value (𝐴𝐴𝑖𝑖 + 𝑆𝑆 k,i-1 ) ≥ 𝑝𝑝𝑘𝑘 , then a carry signal is 
generated at the transfer output of the (n+1)-bit adder 4, 
which goes to the control input of the multiplexer 5 and 
connects its second information input with its information 
output, while the value (𝐴𝐴𝑖𝑖 + 𝑆𝑆k,i-1) − 𝑝𝑝𝑘𝑘  is received at the 
second information input from the information outputs of the 
(n+1)-bit adder 4. If the value (𝐴𝐴𝑖𝑖 + 𝑆𝑆k,i-1) < 𝑝𝑝𝑘𝑘 , then the 
transfer signal at the transfer output of the (n+1)-bit adder 4 is 
absent and its first information input will be connected to the 

information output of the multiplexer, to which from the 
information output of the (n+1)-bit register 3 the value(𝐴𝐴𝑖𝑖 +
𝑆𝑆k,i-1) arrives. As a result, at the information output of the 
multiplexer 5, and consequently at the information output 9 
of the device, the values 𝑆𝑆k, i will be generated separately for 
the odd stream of numbers S1,i and for the even stream of 
numbers S2,i. An example of how the device works is shown 
in Table 1. 

TABLE 1. STATES OF THE INPUTS AND OUTPUTS OF THE ADDER 
ELEMENTS AT EACH CLOCK CYCLE 
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1 33 0 33,0 33,0 33 – – – 
2 6A E7 6A,33 6A,0 6A 33 0,4C 33 
3 67 F9 67,6A 67,33 9A 6A 0,71 6A 
4 53 E7 53,9A 53,6A BD 9A 0.B3 9A 
5 5E F9 5E,BD 5E,9A F8 BD 0,C4 BD 
6 5E E7 5E,11 5E,BD 1B F8 1,11 11 
7 76 F9 76,22 76,11 87 1B 1,22 22 
8 2A E7 2A,87 2A,22 4C 87 0,A0 87 
9 70 F9 70,4C 70.87 F7 4C 0.53 4C 
10 2E E7 2E,10 2E,4C 7A F7 1.10 10 
11 77 F9 77,7A 77,10 87 7A 0,81 7A 

 

VII. RESULTS AND DISCUSSION 
To compare the performance of the hardware implementation 
of the proposed algorithm of accumulating with existing 
solutions [11], we will assume that the response times of the 
main elements of the circuit are approximately the same for a 
width of 8 bits. As the bit width of the device increases, the 
delay in the adders will generally increase. 

Let us introduce coefficient k, which takes into account the 
increase in the adder delay in relation to, for example, its 8-bit 
version. For various implementations of adders, the 
dependence of their performance on the bit width is studied in 
detail in [22]. 

Taking into account the above, the accumulating time T1 of 
a sequence of M numbers for the known solution [11] can be 
represented as 

 
 𝑇𝑇1 = 𝑀𝑀(2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 + 𝑡𝑡𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), (11) 
where tsum is the delay time of the adder; 

tRG is the register response delay time; 
tmux is the multiplexer response delay time; 
k is the coefficient taking into account the increase in the 

adder’s bit width. 
The addition time, taking into account the introduction of 

one more register to the circuit and taking into account the 
fact that during one cycle the addition of two numbers of the 
input stream occurs simultaneously, we will write it as 

 
 𝑇𝑇2 = 𝑀𝑀(2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 + 𝑡𝑡𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) + 
 (2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 + 𝑡𝑡𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) (12) 
where the second group of terms takes into account the latent 
period of operation of the device. 

Let us assume that for a device capacity of 8 bits, the 
response delay times of all elements are approximately the 
same and equal to t=tsum=tRG=tmux. 

Then (11) and (12) can be represented respectively as  
 

 𝑇𝑇1 = 2𝑀𝑀𝑀𝑀(𝑘𝑘 + 1), (13) 
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 𝑇𝑇2 = 𝑡𝑡(𝑀𝑀

2
(2𝑘𝑘 + 1) + (𝑘𝑘 + 3)). (14) 

 
We define the gain in performance as  

 𝐵𝐵 = 𝑇𝑇1
𝑇𝑇2

= 2𝑀𝑀𝑀𝑀(𝑘𝑘+1)

𝑡𝑡(𝑀𝑀2 (2𝑘𝑘+1)+(𝑘𝑘+3))
= (2𝑀𝑀(𝑘𝑘+1))

𝑀𝑀
2 (2𝑘𝑘+1)+(𝑘𝑘+3)

  (15) 

 
Figure 5 shows the results of calculating the performance 
gain for the device bit width of 8, 16, 3, 64 and 128 bits and 
the amount of numbers in the stream from 1 to 64. 

 
Fig. 5 – Gain in performance 

 
Asymptotically, the gain tends to 2 as the amount of 

summed numbers increases. 

VIII. CONCLUSION 
The article presents a method of accumulating to arbitrary 

modulo for two streams of numbers from a common 
sequence of numbers. 

For the proposed method of accumulating, an algorithm 
has been developed that implements it. The practical 
implementation of the algorithm is carried out using the 
Verilog HDL hardware description language. Using the 
developed testing module, the correct operation of the 
proposed algorithm was verified using specific numerical 
examples. 

A hardware implementation of the proposed algorithm of 
accumulating to arbitrary modulo using binary adders, 
registers and a multiplexer is also proposed. 

It is shown that the technical implementation has 
asymptotically 2 times better performance compared to 
existing solutions. 

The use of the proposed method of accumulating in 
asymmetric cryptographic systems when implementing 
operations of multiplying large numbers modulo, all other 
things being equal, will allow the use of keys with a larger 
length, which will increase the systems’ resistance to attacks. 
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