
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

Abstract—This article examines the methods of accumulating

in the context of operations of multiplying numbers to arbitrary
modulo in cryptographic applications. The authors present a
new approach to data processing using methods accumulating
to arbitrary modulo, which when encrypting information will
improve the performance of cryptographic transformation
operations. The article describes in detail the main methods of
accumulating to arbitrary modulo, their advantages and
potential uses in cryptographic applications. The research,
methodologies and practical solutions presented in the article
are of interest to specialists in the field of cybersecurity, as well
as to developers of high-tech software and IS software and
hardware.

Keywords—modulo addition, accumulating, cybersecurity,

hardware description language, asynchronous encryption.

I. INTRODUCTION
When exchanging information between various objects of
informatization and information technologies, one of the
main tasks is to ensure the confidentiality of information that
has intellectual or economic value for the owner of the
information and is not common for general use. This problem
is currently solved by various methods, the most reliable of
which is the method of cryptographic transformations during
information exchange [1]. For such purposes, standard
symmetric and asymmetric encryption algorithms are used.
Asymmetric algorithms are more complex to calculate and
implement than symmetric ones [2].

The RSA (Rivest-Shamir-Adleman) algorithm [4], [5] is
one of the most widely used public key encryption
algorithms, which is based on the problems of generating
prime numbers, multiplying numbers modulo and
decomposing composite numbers into prime factors.

Due to the popularity and widespread use of the RSA
algorithm, a number of elementary attacks are known that
hinder its use for small cryptographic key lengths [6], [7].

To counter such attacks, the length of the RSA
cryptographic key may be increased, which complicates its
implementation and leads to a decrease in its speed [8].

Article received on May 17, 2024.
Petrenko Vyacheslav Ivanovich, Head of a Department of the Institute of

Digital Development of the North Caucasus Federal University, Stavropol,
Russia (email: vipetrenko@ncfu.ru).

Kopytov Vladimir Vyacheslavovich, Professor of the Institute of Digital
Development of the North Caucasus Federal University, Stavropol, Russia
(email: vkopytov@ncfu.ru).

Sutormin Matvey Pavlovich, student of the “Information security”
Training program of the North Caucasus Federal University, Stavropol,
Russia (email: sutorminp@gmail.com).

The greatest complexity in the implementation of the
algorithm comes from the operation of multiplying numbers
modulo other than 2n [9]. Reducing the complexity of
implementing the operation of multiplying numbers to
arbitrary modulo is possible by reducing intermediate partial
products obtained as a result of arbitrary modulo
multiplication, followed by the operation of accumulating
these partial products to the same arbitrary modulus. The
implementation of this method with hardware solutions will
further improve the performance of cryptographic
transformation operations. Therefore, the development of an
effective method of accumulating is an urgent task to increase
the performance of cryptographic algorithms.

II. APPLICATION OF MODULO ADDITION IN THE RSA
ALGORITHM

The RSA algorithm uses modulo addition to encrypt and
decrypt data using public and private keys, respectively, as
part of an arbitrary modulo multiplication operation.

When encrypting with a public key, the sender takes the
following steps:

1. Selects the recipient's public key, which consists of two
numbers: (e, p), where p is the product of two prime numbers
b and q, and e is the public key.

2. Converts the original message M to an integer m, where
m<p.

3. Calculates an encrypted message c using the public key
according to the formula:

 𝑐𝑐 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, (1)
where c is the encrypted message, m is the plaintext, e is the
public key, p is the modulus.

4. Sends the encrypted message c.
When decrypting using a private key, the recipient

completes the following steps:
1. Receives the encrypted message c.
2. Selects a private key, which consists of two numbers:

(d, p), where d is the private key.
3. Calculates the integer m using the private key according

to the formula:

 𝑚𝑚 = 𝑐𝑐𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝. (2)

4. Converts the integer m to the original message M.
When implementing this algorithm, the main operation is

the operation of raising numbers to a power modulo the
corresponding one. Raising a number to a power can be
thought of as repeatedly multiplying a number by itself and
then modulo the result. For example, to raise number a to the
power of n modulo p, one needs to multiply a by itself (n−1)
times, and then convert the result modulo p. In practice, a
modulo reduction operation is usually performed after each

Method and device to implement accumulating
to arbitrary modulo in cryptographic applications

V. I. Petrenko, V. V. Kopytov, M. P. Sutormin

105

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

multiplication operation. Faster algorithms for raising
numbers to powers are also used, which involve expanding
the power and performing the corresponding transformations.
When implementing such algorithms, the operation of
accumulating modulo p is used as part of the operations of
exponentiation, which involves finding the remainder when
dividing the sum of numbers by p. That is, if the sum exceeds
p, the remainder of the sum divided by p is taken so that it
remains in the range from 0 to (p−1). Using these two
concepts, one can effectively represent the operation of
exponentiation as a sequence of addition and remainder
operations, which can be useful, for example, when working
with large numbers used in cryptographic applications.

III. ACCUMULATING METHODS
The classic method of constructing modulo 2n accumulators,
where n is the number capacity, is to add a register to the
accumulator output and create feedback from the register
output to the second information inputs of the accumulator.
The accumulating principle is that the accumulator has one
input to which a sequence of numbers 𝐴𝐴𝑖𝑖 is supplied and
these numbers are sequentially summed modulo 2n, forming
the sum 𝑆𝑆𝑖𝑖:

 𝑆𝑆𝑖𝑖 = (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑛𝑛. (3)

These schemes are widely known and their
implementation is presented in [10]. However, in a number of
applications, including cryptographic ones, problems of
accumulating modulo other than 2n often arise, for example:

 2𝑛𝑛 ± 𝑘𝑘,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 2𝑛𝑛−1 > 𝑘𝑘 ≥ 1. (4)

There are known methods for n-bit arbitrary modulo
addition, used in a modulo accumulator [11], [12]. The main
idea of these methods is that the integer numbers Аi,
(i=1, 2, 3...), 0 ≤ 𝐴𝐴𝑖𝑖 < 𝑝𝑝, arriving at the input of the
accumulator, are summed clock by clock with the numbers
Si−1, written in its memory at the previous clock cycle. The
result of the addition Ai + Si−1 is taken modulo p as follows. If
(Ai + Si−1) < p, then the usual addition (Ai + Si−1) is performed
and this sum is the result of Si.
 If (Ai + Si−1) ≥ р, then the р value is subtracted from the sum
(Ai + Si−1) and the result Si is the sum (Ai + Si−1) mod р. The
result is written to the device’s memory and used as the value
of the number Si−1 at the next clock cycle.

 𝑆𝑆𝑖𝑖 ≡ (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, (𝑖𝑖 = 1, 2, 3 …). (5)

Moreover, 𝑆𝑆𝑖𝑖 is calculated in the following sequence:

 𝑆𝑆𝑖𝑖′ = 𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1, (6)

 𝑆𝑆𝑖𝑖′′ = 𝑆𝑆𝑖𝑖′ − 𝑝𝑝, (7)

 𝑆𝑆𝑖𝑖 = �
𝑆𝑆𝑖𝑖′, 𝑖𝑖𝑖𝑖 (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) < 𝑝𝑝
𝑆𝑆𝑖𝑖′′, 𝑖𝑖𝑖𝑖 (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑖𝑖−1) ≥ 𝑝𝑝 , (8)

where 𝑆𝑆𝑖𝑖 is the value of the sum modulo p at the i clock cycle,
𝑆𝑆0 = 0.

This method in [11] is implemented by sequential
calculation of 𝑆𝑆𝑖𝑖′ and 𝑆𝑆𝑖𝑖′′ by two different adders. The
determination of 𝑆𝑆𝑖𝑖 is carried out based on the results of
calculating 𝑆𝑆𝑖𝑖′ and 𝑆𝑆𝑖𝑖′′ in accordance with (8). This

implementation, firstly, increases the time for generating the
result, and secondly, leads to inefficient use of equipment,
since only one adder operates at a time.

The works [12], [13], [14], [15], [16] propose options for
parallel calculations of 𝑆𝑆𝑖𝑖′ and 𝑆𝑆𝑖𝑖′′, but this complicates the
structure of the adder that implements the operation of
finding 𝑆𝑆𝑖𝑖′′, since it must be implemented as a three-input
adder.

Thus, the known hardware implementations of the
arbitrary modulo accumulating operation either use the
equipment inefficiently and have a long addition time, or
have a complex implementation of three-input adders, which
limits their use when adding sequences with a large amount
of numbers and large bit capacity.

In order to increase the efficiency of equipment use and
improve the speed of adding large sequences of numbers, a
method of accumulating addition to arbitrary modulo is
proposed, which helps divide the addition of a sequence of
numbers into two streams and effectively use the equipment.
The essence of this method is as follows.

The input sequence of non-negative integer numbers
𝐴𝐴𝑖𝑖 (𝑖𝑖 = 1, 2, 3, …), 0 ≤ 𝐴𝐴𝑖𝑖 < 𝑝𝑝𝑘𝑘 , 𝑘𝑘 = 1, 2 is summed clock
by clock in two separate streams with the numbers written in
its memory on previous clock cycles, forming two
independent output sequences of numbers Sk,i, associated
respectively with odd and even clock numbers.
Odd and even output sequences are generated alternately.
Addition for odd and even number streams can be carried out
for different moduli p1 и p2, respectively. Let us denote the
modulo sum for the first (odd) stream of numbers as S1,i and
for the second (even) stream of numbers as S2,i. Then:

 𝑆𝑆1,𝑖𝑖−1 = (∑ 𝐴𝐴𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝1, (𝑖𝑖 = 1, 3, 5, …), (9)
 𝑆𝑆2,𝑖𝑖−1 = (∑ 𝐴𝐴𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2, (𝑖𝑖 = 2, 4, 6, …). (10)

To implement the proposed method of accumulating, it is
necessary to add one more memory cell to the known
implementation options [11].

One memory cell at each clock cycle stores input numbers
Аi with n-bit capacity and output numbers S1,i at the even
clock cycle and S2,i at the odd clock cycle with n-bit width.

The second memory cell stores the sum (Аi + S1,i) at the
even clock cycle and the sum (Аi + S2,i) at the odd clock cycle
during the next clock cycle. Next, the sum (Аi + Sk,i) is
reduced modulo pk, where k=1, 2. If the specified sum is
greater than modulo pk, then this modulus is subtracted from
it, otherwise the sum without change is sent to the output of
the device.

IV. ALGORITHM FOR ACCUMULATING TO ARBITRARY
MODULO

The proposed method of accumulating can be implemented
by the following algorithm, which uses the following
notation: Ai is an input sequence of non-negative integer
numbers, consisting of two independent streams of numbers,
alternating for even i and odd i, integer non-negative moduli
p1 and p2, over which accumulating is carried out,
respectively, for the first and second stream of numbers, and
the values of Ai do not exceed the values of the corresponding
moduli p1 and p2, S1,i is accumulating sum modulo p1, S2,i is
accumulating sum modulo p2.
1) Start.
2) Input M.

106

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

3) Assign 𝑖𝑖 = 1; 𝑘𝑘 = 1; 𝑆𝑆1,0 = 0, 𝑆𝑆2,0 = 0.
4) Input 𝐴𝐴𝑖𝑖.
5) Assign 𝑆𝑆𝑘𝑘,𝑖𝑖

′ = 𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑘𝑘,𝑖𝑖−1.
6) Assign 𝑖𝑖 = 𝑖𝑖 + 1.
7) Assign 𝑆𝑆𝑘𝑘,𝑖𝑖

′′ = 𝑆𝑆𝑘𝑘,𝑖𝑖−1
′ − 𝑃𝑘𝑘.

8) If 𝑆𝑆𝑘𝑘,𝑖𝑖
′′ < 0, then assign 𝑆𝑆𝑘𝑘,𝑖𝑖 = 𝑆𝑆𝑘𝑘,𝑖𝑖

′′ , otherwise assign
𝑆𝑆𝑘𝑘,𝑖𝑖 = 𝑆𝑆𝑘𝑘,𝑖𝑖−1

′ .
9) Output 𝑆𝑆𝑘𝑘,𝑖𝑖.
10) If 𝑖𝑖 > 𝑀𝑀, then go to step 13.
11) Assign 𝑘𝑘 = 2 − 𝑖𝑖 mod 2.
12) Go to step 4.
13) End.

V. IMPLEMENTATION OF THE ACCUMULATING ALGORITHM
IN THE VERILOG HDL HARDWARE DESCRIPTION LANGUAGE

The proposed method of accumulating to arbitrary modulo
can be implemented using a hardware description language,
which is used for modeling and designing digital systems
[17], [18]. An accumulator with two channels for n=8
numbers, implementing the parallel addition method,
performed in Verilog HDL [19], is presented in Fig. 1.

The software module consists of blocks describing the
inputs and outputs of the modulo accumulator itself,
declaring variables and describing the inputs and outputs of
two registers, two adders and a multiplexer. The software
module uses libraries implemented in a standard way that
describe adders, registers and a multiplexer. First, libraries
with adders (“adder.v”), registers (“registrs.v”), multiplexer
(“mux.v”), in which the corresponding moduli are described,
are imported. The implementation of such libraries is
standard and is not shown in this listing. The
“modulo_adder” specifies the inputs (input_a, clk, P) and
outputs (mux_out) of the device. The 8-bit wire connections
are then declared, which are described in more detail in the
code comments.

The following snippet creates objects and configures the
device's inputs and outputs:
− reg_16_bit is a 16-bit register, input_a is the first

information input of the register, input_b is the second
information input of the register, clk is the clock input and
corresponding outputs out_a, out_b;
− adder_8 is the 8-bit adder;
− a and b are adder inputs, out and carry are outputs;
− reg9Bit is the 9-bit register;
− data_in is the data input;
− clk is the clock input and two outputs data_out_8bit

(8-bit), data_out_1bit (1-bit);
− adder_9 is the 9-bit adder;
− a and b are 9-bit adder inputs and outputs out, cin,

carry;
− multiplexer2to1 is the multiplexer,
− input_from_sum is the input connected to the adder;
− input_from_reg is the input connected to the register,

control is the control input;
− out is the information output.
To check the correct operation of the accumulating

module, a testing module was developed, the code of which is
presented in Fig. 2. At the beginning of this module, the
modulo accumulator is imported.

Fig. 1 – Modulo accumulator in Verilog HDL for number bit

width n=8

Next, the variables are created: clk is the clock signal,
input_a is the 8-bit input of the device, P_reverse is the input
for the inverse code of the module, mux_out is the output of
the multiplexer. Then the tb(testbench) module is created, in
which testing will take place. In the next block, a
modulo_adder object is created, which was shown in Fig. 1,
and its inputs and outputs are configured. Next, the period for
the clock signal and a description of the alternation of the
reverse module P_reverse are introduced. The initialization
of P is described, as well as uploading the simulation to the
tb.vcd file and entering the first two numbers. The figure
shows only 2 input_a numbers, but 11 numbers will be
entered (6 for the 1st module and 5 for the 2nd module).

Direct and inverse codes p1, p2 are defined:

𝑝𝑝1 = 23110 = 111001112 = E716,
𝑝𝑝1��� = 000110002 = 1816,
𝑝𝑝2 = 24910 = 111110012 = F916,
𝑝𝑝2��� = 000001102 = 0616.

107

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

A simulation of the module’s operation is given in Fig. 3,
which shows the states of the inputs and outputs of the main
elements of the accumulator at each clock.

To demonstrate the operation, a sequence of 11 numbers is
defined as initial data, which can be divided into two streams.
In this case, the following numbers, presented in hexadecimal
form, are summed modulo p1: 33, 67, 5E, 76, 70, 77 (odd
positions in line input_a). Numbers 6A, 53, 5E, 2A, 2E are
summed modulo p2 (even positions in the line input_a).

The line tb.clk represents clock pulses. adder_8.out
denotes the result of the sum 𝑆𝑆𝑘𝑘,𝑖𝑖

′ = 𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑘𝑘,𝑖𝑖−1
on the 8-bit adder; adder_9.out denotes the difference result
𝑆𝑆𝑘𝑘,𝑖𝑖
′′ = (𝐴𝐴𝑖𝑖 + 𝑆𝑆𝑘𝑘,𝑖𝑖−1 − 𝑃𝑘𝑘) on the 9-bit adder; p_reverse

denotes the inverse code of modulo p; control denotes the
control input of the multiplexer; mux_out denotes the
information outputs of the multiplexer.

By direct verification we are convinced that
(33+67+5E+76+70) mod E7 = 1DE mod E7 = 10, and
(6A+53+5E+2A+2E) mod F9 = 173 mod F9 = 7A, which
confirms the correctness of the implementation of the
software module. We can observe these values in the MUX 5
column, at 10 and 11 clock cycles.

Fig. 2 – Testing module

Fig. 3 – Simulation of the operation of a two-channel modulo adder

VI. HARDWARE IMPLEMENTATION OF THE ALGORITHM OF
ACCUMULATING

The hardware implementation of the proposed method of
accumulating on logical modules of the type [20] and [21] is
presented in Fig. 4.

The accumulator to arbitrary modulo contains 2n-bit and
(n+1)-bit registers 1 and 3, respectively, where n is the bit
width of the numbers being processed, n-bit and (n+1)-bit
adders 2 and 4, multiplexer 5, first 6 and second 8
information inputs of the device, information outputs 9 of the
device and clock input 7 of the device.

In the initial state, 2n-bit and (n+1)-bit registers 1 and 3 are
zeroed.

Clock input 7 of the device receives clock pulses
i=1, 2, 3, …, . Numbers Ai are supplied to the first
information inputs 6 of the device with each clock pulse. The
inverse code of module p1 is supplied to the second
information inputs 8 of the device on even clock cycles, and
the inverse code of module p2 is supplied on odd clock cycles
(starting from 3). The sum S1,i−1 modulo p1 for numbers Ai
(i=2, 4, 6,…) and the sum S2,i−1 modulo p2 for numbers Ai
(i=1, 3, 5, …) is taken from the information 9 device outputs.
In this case

0 ≤ Ai (i=2, 4, 6, …) < p1,
0 ≤ Ai (i=1, 3, 5, …) < p2.

108

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

On the first clock cycle of the device, the first n-bit number A1
is written to the 2n-bit register 1. Moreover, it is written in the
lowest n bits, and the highest n bits are reset to zero. From the
lower n bits of the information outputs of the 2n-bit register 1,
the number A1 is supplied to the first information inputs of the
n-bit adder 2, and the second information inputs receive a
zero value from the highest n bits of the information outputs
of the 2n-bit register 1. At the information outputs of n-bit
adder 2, the value of the sum A1 + S1,0 is formed. Since the
value of S1,0 is 0 at the first clock cycle, the value A1 is
generated at the information outputs of n-bit adder 2. This
value is then written to (n+1)-bit register 3 on the next clock
cycle.

Ai

1 2 43

Pi

6

7

8
5 9

"1"

"1"

Si

Fig. 4 – Hardware implementation of the accumulator to

arbitrary modulo

On the second clock cycle of the device, the second n-bit

number A2 is written to the 2n-bit register 1, and the value of
A1 from the outputs of the n-bit adder 2 is written to the (n+1)
bits of the (n+1)-bit register 3. The number A2 is written to the
lower n bits of the 2n-bit register 1, while a zero value is
written to the highest n bits. From the lower n bits of the
information outputs of the 2n-bit register 1, the number A2 is
supplied to the first information inputs of the n-bit adder 2,
and the second information inputs receive a zero value from
the highest n bits of the information outputs of the 2n-bit
register 1. At the information outputs of n-bit adder 2, the
sum value (A2 + S2,0) is formed. Since in the second cycle the
value of S2,0 is equal to 0, the value A2 is formed at the
information outputs of the n-bit adder 2. In this case, the first
information inputs of the (n+1)-bit adder 4 will receive the
value A1 from the information outputs of the (n+1)-bit
register 3, and the low-order n bits of the second information
inputs will receive the n-bit inverse code of the modulus 𝑝𝑝1,
which is complemented to the (n+1)th bit by the value of a
logical one arriving at the (n+1)th bit of the second
information inputs of the (n+1)-bit adder 4. Since a logical
one signal is received at the carry input of the (n+1)-bit adder
4, this adder essentially performs a subtraction
operation �𝐴𝐴1 + 𝑆𝑆1,0� − 𝑝𝑝1.

On the following cycles, the device operates in a similar
way.

If the value (𝐴𝐴𝑖𝑖 + 𝑆𝑆 k,i-1) ≥ 𝑝𝑝𝑘𝑘 , then a carry signal is
generated at the transfer output of the (n+1)-bit adder 4,
which goes to the control input of the multiplexer 5 and
connects its second information input with its information
output, while the value (𝐴𝐴𝑖𝑖 + 𝑆𝑆k,i-1) − 𝑝𝑝𝑘𝑘 is received at the
second information input from the information outputs of the
(n+1)-bit adder 4. If the value (𝐴𝐴𝑖𝑖 + 𝑆𝑆k,i-1) < 𝑝𝑝𝑘𝑘 , then the
transfer signal at the transfer output of the (n+1)-bit adder 4 is
absent and its first information input will be connected to the

information output of the multiplexer, to which from the
information output of the (n+1)-bit register 3 the value(𝐴𝐴𝑖𝑖 +
𝑆𝑆k,i-1) arrives. As a result, at the information output of the
multiplexer 5, and consequently at the information output 9
of the device, the values 𝑆𝑆k, i will be generated separately for
the odd stream of numbers S1,i and for the even stream of
numbers S2,i. An example of how the device works is shown
in Table 1.

TABLE 1. STATES OF THE INPUTS AND OUTPUTS OF THE ADDER
ELEMENTS AT EACH CLOCK CYCLE

C
lo

ck
 N

o.

A i

P k

R
G

1
in

R
G

1
ou

t

A
dd

er
 2

R
G

 3

ou
t

A
dd

er
 4

M
U

X
 5

1 33 0 33,0 33,0 33 – – –
2 6A E7 6A,33 6A,0 6A 33 0,4C 33
3 67 F9 67,6A 67,33 9A 6A 0,71 6A
4 53 E7 53,9A 53,6A BD 9A 0.B3 9A
5 5E F9 5E,BD 5E,9A F8 BD 0,C4 BD
6 5E E7 5E,11 5E,BD 1B F8 1,11 11
7 76 F9 76,22 76,11 87 1B 1,22 22
8 2A E7 2A,87 2A,22 4C 87 0,A0 87
9 70 F9 70,4C 70.87 F7 4C 0.53 4C
10 2E E7 2E,10 2E,4C 7A F7 1.10 10
11 77 F9 77,7A 77,10 87 7A 0,81 7A

VII. RESULTS AND DISCUSSION
To compare the performance of the hardware implementation
of the proposed algorithm of accumulating with existing
solutions [11], we will assume that the response times of the
main elements of the circuit are approximately the same for a
width of 8 bits. As the bit width of the device increases, the
delay in the adders will generally increase.

Let us introduce coefficient k, which takes into account the
increase in the adder delay in relation to, for example, its 8-bit
version. For various implementations of adders, the
dependence of their performance on the bit width is studied in
detail in [22].

Taking into account the above, the accumulating time T1 of
a sequence of M numbers for the known solution [11] can be
represented as

 𝑇𝑇1 = 𝑀𝑀(2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 + 𝑡𝑡𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), (11)
where tsum is the delay time of the adder;

tRG is the register response delay time;
tmux is the multiplexer response delay time;
k is the coefficient taking into account the increase in the

adder’s bit width.
The addition time, taking into account the introduction of

one more register to the circuit and taking into account the
fact that during one cycle the addition of two numbers of the
input stream occurs simultaneously, we will write it as

 𝑇𝑇2 = 𝑀𝑀(2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 + 𝑡𝑡𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) +
 (2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 + 𝑡𝑡𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) (12)
where the second group of terms takes into account the latent
period of operation of the device.

Let us assume that for a device capacity of 8 bits, the
response delay times of all elements are approximately the
same and equal to t=tsum=tRG=tmux.

Then (11) and (12) can be represented respectively as

 𝑇𝑇1 = 2𝑀𝑀𝑀𝑀(𝑘𝑘 + 1), (13)

109

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 9, 2024

 𝑇𝑇2 = 𝑡𝑡(𝑀𝑀

2
(2𝑘𝑘 + 1) + (𝑘𝑘 + 3)). (14)

We define the gain in performance as

 𝐵𝐵 = 𝑇𝑇1
𝑇𝑇2

= 2𝑀𝑀𝑀𝑀(𝑘𝑘+1)

𝑡𝑡(𝑀𝑀2 (2𝑘𝑘+1)+(𝑘𝑘+3))
= (2𝑀𝑀(𝑘𝑘+1))

𝑀𝑀
2 (2𝑘𝑘+1)+(𝑘𝑘+3)

 (15)

Figure 5 shows the results of calculating the performance
gain for the device bit width of 8, 16, 3, 64 and 128 bits and
the amount of numbers in the stream from 1 to 64.

Fig. 5 – Gain in performance

Asymptotically, the gain tends to 2 as the amount of

summed numbers increases.

VIII. CONCLUSION
The article presents a method of accumulating to arbitrary

modulo for two streams of numbers from a common
sequence of numbers.

For the proposed method of accumulating, an algorithm
has been developed that implements it. The practical
implementation of the algorithm is carried out using the
Verilog HDL hardware description language. Using the
developed testing module, the correct operation of the
proposed algorithm was verified using specific numerical
examples.

A hardware implementation of the proposed algorithm of
accumulating to arbitrary modulo using binary adders,
registers and a multiplexer is also proposed.

It is shown that the technical implementation has
asymptotically 2 times better performance compared to
existing solutions.

The use of the proposed method of accumulating in
asymmetric cryptographic systems when implementing
operations of multiplying large numbers modulo, all other
things being equal, will allow the use of keys with a larger
length, which will increase the systems’ resistance to attacks.

REFERENCES
[1] V. F. Shangin, Zashchita informacii v komp'yuternyh sistemah i setyah

[Information protection in computer systems and networks]. DMK

Press, 2012. 592 p. (in Russian).
[2] S. Singh, S. K. Maakar, and S. Kumar. “A Performance Analysis of

DES and RSA Cryptography.” International Journal of Emerging
Trends & Technology in Computer Science, 2013, vol. 2, Issue 3, pp.
418–423.

[3] B. Preneel, “Cryptographic hash functions,” Eur. Trans. Telecommun.,
vol. 5, no. 4, pp. 431–448, 1994, doi: 10.1002/ETT.4460050406.

[4] G. J. Simmons, “A ‘weak’ privacy protocol using the rsa crypto
algorithm,” Cryptologia, vol. 7, no. 2, pp. 180–182, 1983, doi:
10.1080/0161-118391857900.

[5] A. Jung, “Implementing the RSA cryptosystem,” Comput. Secur., vol.
6, no. 4, pp. 342–350, Aug. 1987, doi:
10.1016/0167-4048(87)90070-8.

[6] J. Gordon, “Strong RSA keys,” Electron. Lett., vol. 20, no. 12, pp. 514–
516, Jun. 1984, doi: 10.1049/EL:19840357.

[7] M. Preetha and M. Nithya, “A study and performance analysis of RSA
algorithm,” IJCSMC, Vol. 2, Issue. 6, June 2013, pg.126 – 139.

[8] Y. V. Artyukhov, Analiz algoritma RSA. Nekotorye rasprostranyonnye
elementarnye ataki i mery protivodejstviya im. [Analysis of the RSA
algorithm. Some common elementary attacks and countermeasures].
Young Scientist, no. 22, p. Т.1. 85-87, 2010 (in Russian).

[9] H. Nikumbh and V. Shah, “Hardware implementation of modular
multiplication,” 2018 3rd IEEE Int. Conf. Recent Trends Electron. Inf.
Commun. Technol. RTEICT 2018 - Proc., pp. 376–380, May 2018, doi:
10.1109/RTEICT42901.2018.9012447.

[10] B. V. Tarabrin, S.V. YAkubovski, N. A. Barkanov. B. V. Tarabrin,
Spravochnik po integral'nym mikroskhemam. Ed. by B.V. Tarabrin. -
2nd ed., revised and enlarged - M.: Energia, 1981.

[11] V. I. Petrenko, J. V. Kuz’minov. Nakaplivayushchij summator po
modulyu [Modulo Adder-Accumulator]. Patent Russia, no. 2500017
C1. 2013 (in Russian).

[12] V. I. Petrenko, D. D. Puiko. Nakaplivayushchij summator po modulyu
[Modulo Accumulator]. Patent Russia, no. 2791441 C1. 2023 (in
Russian).

[13] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,”
IEEE Trans. Comput., vol. C–31, no. 3, pp. 260–264, 1982, doi:
10.1109/TC.1982.1675982.

[14] T. Matsunaga and Y. Matsunaga, “Timing-constrained area
minimization algorithm for parallel prefix adders,” IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., vol. E90-A, no. 12, pp.
2770–2777, 2007, doi: 10.1093/IETFEC/E90-A.12.2770.

[15] P. Kogge and H. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” IEEE Trans.
Comput., vol. C–22, no. 8, pp. 786–793, 1973, doi:
10.1109/TC.1973.5009159.

[16] C. H. Pavan Kumar and K. Sivani, “Implementation of efficient
parallel prefix adders for residue number system,” Int. J. Comput.
Digit. Syst., vol. 4, no. 4, pp. 295–300, Oct. 2015, doi:
10.12785/IJCDS/040409.

[17] S. L. Harris and D. Harris, “Hardware Description Languages,” Digit.
Des. Comput. Archit., pp. 170–235, 2022, doi:
10.1016/B978-0-12-820064-3.00004-0.

[18] “Circuit Modeling with Hardware Description Languages,” Top-Down
Digit. VLSI Des., pp. 179–300, 2015, doi:
10.1016/B978-0-12-800730-3.00004-6.

[19] P. Benáček, V. Puš, H. Kubátová, and T. Čejka, “P4-To-VHDL:
Automatic generation of high-speed input and output network blocks,”
Microprocess. Microsyst., vol. 56, pp. 22–33, Feb. 2018, doi:
10.1016/J.MICPRO.2017.10.012.

[20] J. Zhu and N. Dutt, “Electronic System-Level Design and High-Level
Synthesis,” Electron. Des. Autom., pp. 235–297, 2009, doi:
10.1016/B978-0-12-374364-0.50012-6.

[21] C. M. Maxfield, “‘Traditional’ Design Flows,” FPGAs: Instant Access,
pp. 75–106, 2008, doi: 10.1016/B978-0-7506-8974-8.00005-3.

[22] E.S. Balaka, D.A.Gorodecky, V.S. Rukhlov, A.N. Schelokov,
Razrabotka vysokoskorostnyh summatorov po modulyu na baze
kombinacionnyh summatorov s parallel'nym perenosom [Design and
synthesis of high speed modulo adders using parallel prefix structure]
Izvestiya SFedU. Engineering Sciences, no. 6 (179), p. 910, 2016 (in
Russian).

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

G
ai

n
in

 p
er

fo
rm

an
ce

Number of summed numbers

8 bit

16 bit

32 bit

64 bit

128 bit

110

	I. Introduction
	II. Application of modulo addition in the RSA algorithm
	III. Accumulating methods
	IV. Algorithm for accumulating to arbitrary modulo
	V. Implementation of the accumulating algorithm in the Verilog HDL hardware description language
	VI. Hardware implementation of the algorithm of accumulating
	Table 1. States of the inputs and outputs of the adder elements at each clock cycle
	VII. Results and discussion
	VIII. Conclusion
	References

