
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 30

Abstract—In this paper, the authors will conduct a

comparative analysis of the following methods of data transfer

between mobile web clients: Content Delivery Networks (CDN),

Cloud Computing, Peer-to-Peer networking, and WebRTC. By

first describing the structure and functionality of each of the

main methods of data transfer, and the

advantages/disadvantages and social implications associated

with them, the author will be able to conclude which method is

most effective for on-demand data transfer between individual

clients.

Keywords—CDN, cloud services, P2P, WebRTC.

I. INTRODUCTION

Globally, internet use has increased dramatically over the

last 15 years. From 2000 to 2009 the number of internet

users grew from 394 million to 1.858 billion. By 2014 that

number has nearly than doubled to over 3 billion, or 46.3%

of the world population. As of January 2014, for the first

time in history, internet usage via mobile devices surpassed

that of PC usage in the U.S. This rapid growth in internet

usage by the general public and the increasing use of mobile

devices to access the internet stresses the importance of the

development of reliable, convenient, and on-demand

methods of data transfer between users.

The fundamental role of the internet is to provide an

environment for the transfer of data between users. This data

can take a variety of forms such as text files, music, images,

video files, banking information, etc. Although numerous

methods of data transfer have existed since the time the

internet became available for wide-spread public use (such

as email and FTP), many of these methods require users to

first register an account with an application provider,

through which the user would be able to send and receive

messages. More recently, many downloadable applications

have been created for instant communication between.

However, it is required for these clients to have the same

application preloaded on their respective devices in order to

communicate with other. In addition to registration

requirements, many of these applications have limitations as

to how much data can be stored or transferred at one time,

and they could have charges associated with their usage.

Registration requirements make it difficult for users to

communicate in an instantaneous, or on-demand, manner.

On-demand communication is especially important in

A.Stephenson is master candidate at Lomonosov Moscow State

University (email: asteph2406@gmail.com)
D.Namiot is senior scientist at Lomonosov Moscow State University

(email: dnamiot@gmail.com)

professional fields such as emergency medicine, petroleum

engineering, etc., where information must be transferred

between specialists working at different locations. For

example, a paramedic arrives at the scene of a patient bitten

by a venomous snake. The paramedic is able to take a

picture of the snake, but cannot properly identify it in order

to give the patient the correct anti-venom. How can the

paramedic send a picture of the snake to the herpetologist

instantly? What will the paramedic do if he either does not

know, or does not have the same messaging application

preloaded on his phone as the herpetologist?

Currently, a new technology standard called Web Real-

time Communication (WebRTC) is being developed by

various organizations. WebRTC embeds P2P technology

into web browsers, allowing them to create direct links over

the internet with the computers of other users, without the

need for installing additional software or service

applications [1].

There are two networking architectures: the client-server

model and Peer-to-Peer model (P2P). In this paper we will

describe the methods of data transfer associated with each of

these two networking architectures.

• Client-Server-based data transfer:

o CDN

o Cloud-based Services

• Peer-to-Peer-based data transfer:

o P2P Networks

o WebRTC

We will also conduct a comparative analysis of these data

transfer methods and conclude which one is most suitable

for users.

II. CLIENT-SERVER-BASED DATA TRANSFER

A. Content Delivery Networks

In CDN’s the content provider (CDN origin server) places

copies (“replicas”) of data in a set of nodes at different

geographic locations, and directs the client to use a nearby

node as the server. This allows for content to be placed in

close proximity to the clients [2]. In contrast to web proxies,

which employ reactive caching, CDNs employ solutions

based on proactive caching. With proactive caching, content

is pre-fetched from the origin server and not cached on

demand. In a CDN, multiple replica (CDN servers) host the

same content, and requests from browsers for content are

transferred to the replica that can most effectively serve the

user. In order to choose the best replicas for content

delivery, CDNs must utilize dynamic information about

network conditions and load on replicas, instead using of

On data transfer between mobile web clients

Andrei Stephenson, Dmitry Namiot

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 31

static information about geographic locations and network

connectivity alone. Operating CDNs is complex and

expensive, therefore they are typically built and managed by

companies that offer content distribution service to several

content providers. Examples of a content distribution

provider are Akamai, Speedera Inc., Globix Inc., AT&T [3].

The architecture of CDNs consists of surrogate servers (or

mirrors [3]), clients, and the origin server. In general, there

are three activities that take place on a CDN:

• request-routing infrastructure consists of mechanisms to

redirect content requests from a client to a suitable

surrogate.

• distribution infrastructure consists of mechanisms to

move contents from the origin server to the surrogates.

• accounting infrastructure tracks and collects data on

request-routing, distribution, and delivery functions within

the CDN creating logs and reports of distribution and

delivery activities [3].

The origin server interacts with the CDN in two ways: (1)

it pushes new content to the replica servers; (2) it requests

logs and other accounting data from the CDN or the CDN

itself provides this data to the origin server through the

accounting infrastructure. The clients interact with the CDN

through the request routing infrastructure and surrogate

servers [4].

The proactive caching infrastructure must be transparent

to the end-users that must see no difference with being

served directly by the central server. Proactive caching to the

edges offers better delivery to the client because the content

is located in their proximity. This close-to-the-client

deployment mode is commonly known as forward proxy

caching. Forward proxy implementations can reduce wide

area network traffic by 30 to 50 percent [3].

A Web cache monitors Internet traffic, intercepts requests

for Web objects and then fulfils those requests from the set

of objects it stores (cache hit). If the requested object is not

in the cache (cache miss), the cache forwards the request to

the origin server, which sends a copy of the object back to

the cache. The cache stores the object and sends it back to

the requester. Caches in CDN cooperate interacting through

the Internet Cache Protocol (ICP). ICP is typically used to

build cache clusters or child-parent relationships in

hierarchical caching [3].

Caching activity in a CDN may involve different types of

contents and therefore different functionalities:

• Static Caching: to cache and replicate static content,

such as html pages, images, documents, audio/video file, etc.

• Dynamic Caching: to cache and replicate dynamically

generated content. This includes application delivery and

replication.

• Streaming Media Caching: to store streaming media

objects, as well as to serve streaming media to clients.

Essentially, the cache acts as a streaming media server,

storing media clips for later use.

• Live Splitting: to cache replicated live streams, so that

only one copy is pulled down from the upstream server and

is then distributed to the subscribing clients [3].

One of the important problems in CDNs is how to manage

the consistency of content at replicas with that at the origin

server, especially for those documents changing

dynamically. Cached objects typically have associated

expiration times after which they are considered stale and

must be validated with a remote server (origin or another

cache) before they can be sent to a client. A technique to

achieve cache consistency consists in pre-populating, or

pushing, content to the cache before requests arrive. When

automatically pushing a new, or updated, Web object to a

cache, the content in the cache is guaranteed to be always

fresh and there is no reason for the cache to initiate a

freshness check with the side effect that this technique often

generates a large amount of traffic [3].

In order to direct clients to the appropriate CDN server, a

method called DNS redirection is used. Suppose that a client

wants to fetch a page with the URL

http://www.cdn.com/page.html. To fetch the page, the

browser will use DNS to resolve www.cdn.com to an IP

address. This DNS lookup proceeds in the usual manner. By

using the DNS protocol, the browser learns the IP address of

the name server for the web page cdn.com. The browser then

contacts the name server to ask it to resolve www.cdn.com.

The name server of the web page is run by the CDN, and

instead, of returning the same IP address for each request, it

will look at the IP address of the client making the request

and return the appropriate answer. The answer will be the IP

address of the CDN node (or replica) that is nearest the

client, and the client will be able to retrieve the web page

from the replica [2].

The benefits of CDNs are: 1) Improvement of user

experience due to clients being able to download content

from nearby servers instead of distant servers. This reduces

round-trip time, and thus decreases page load time. 2) There

is a reduction in the total load that is placed on the network.

3) CDNs can be scaled up to as many clients as needed by

using more nodes [2].

 An example of a company that provides content

distribution for content providers is Akamai. Akamai is

comprised of more than 61,000 servers located across nearly

1,000 networks in 70 countries worldwide, the Akamai

platform delivers hundreds of billions of Internet

interactions daily, helping thousands of enterprises boost the

performance and reliability of their Internet applications [4].

 YouTube is a web-based service that provides video

sharing via the Internet. Clients can upload their own videos

and make them available to the public. Viewers can search

for videos and then watch these videos on their computers or

mobile devices. YouTube employs a CDN to deliver content

to its end users. When a client chooses a specific video, a

HTTP GET message is sent from the client to the YouTube

web server. The YouTube server responds with a redirect

(HTTP303 See Other) message that contains a response-

header field that redirects the client to the CDN server that is

most appropriate for the user at that time [5].

B. Cloud computing

Cloud computing is a new and increasingly popular

technology. It is conceptually built upon the fusion of older

technologies such as grid computing, virtualization, Web

2.0, and service oriented architecture [6]. Advances of multi-

core technology, the low cost of system hardware, and the

increasing cost of the energy needed to operate them is

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 32

motivating an increasing amount of organizations to adopt

cloud-based solutions for their operational needs [7].

Although a formal definition of cloud computing remains to

be formulated, one of the widely-used definitions has been

provided by Ian Foster. According to Foster, cloud

computing is “A large-scale distributed computing

paradigm that is driven by economies of scale, in which a

pool of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms, and services

are delivered on demand to external customers over the

Internet” [6; 7].

 In cloud computing, applications can be run inside a

user’s browser, with user data stored on servers in Internet

data centers. The browsers can use web protocols to access

data stored on the cloud, and to request computation of data

on the cloud. This is advantageous to users because they

wouldn’t have to waste resources on computation of data,

storage of data, nor on the installation of applications. Also

user data and applications can be accessed from any

computer with an internet connection in any geographical

location on demand [2]. Other benefits provided by cloud

computing are:

• Scalability- Cloud service providers (CSPs) have large

data centers with many servers that are used for data storage

and processing [7]. CSPs also implement the methods of

resource virtualization and statistical multiplexing to provide

seemingly limitless resources to their clients.

• Lower operation costs- Clouds provide affordable

solutions that handle peaks, or scale easily at a fraction of

the traditional costs of space, time and financial investment

[7].

• Manageability- The user experience is simplified as no

configuration or backup is needed [7].

C. Cloud Elasticity and Virtualization

Cloud computing implements the technology of

virtualization, where applications share the underlying

physical hardware by running in isolated Virtual Machines

(VMs). The VMs are each delegated a certain amount of

computing resources such as CPU, memory and I/O.

Resource provisioning plays an important role for achieving

scalability in the cloud. Resource provisioning refers to

optimally allocating resources to VM’s to match their

workload. Efficient resource provisioning is mainly achieved

by two methods:

• Static resource provisioning- VMs are created with a

specific size and then are consolidated onto a set of physical

servers. VM capacity is static does not change (i.e. is static).

It is usually conducted offline and occurs on monthly or

seasonal timescales.

• Dynamic resource provisioning- VM capacity is

dynamically adjusted to match workload fluctuations.

In both static and dynamic provisioning, VM sizing is the

most important step. VM sizing is the estimation of the

amount of resources that should be allocated to a VM. The

goal of VM sizing is to ensure that VM capacity is

commensurate with the workload. While over-provisioning

wastes costly resources, under-provisioning degrades

application performance and may lose customers. Dynamic

resource provisioning implements statistical multiplexing

methods to estimate the capacity needs of multiple VMs. For

example, the peaks and troughs of a VM’s demand

characteristics do not necessarily coincide with those of

other VMs. The unused resources of a low utilized VM can

then be directed to other co-located VMs at their peak

utilization. Thus, VM multiplexing can be used to improve

resource utilization in clouds [8].

D. Cloud Types

Clouds can be classified in terms of who owns and

manages the cloud. The main types of clouds are public

clouds, private clouds, community clouds and hybrid clouds

[7]. These cloud types are known as deployment models and

they describe the scope of services offered on the cloud to

the customers [9].

A public clouds (or external cloud) is the most common

form of cloud computing in which services are made

available to the general public over the internet. Users

access services offered by the cloud from a cloud service

provider (CSP) on a pay-per-use basis. Companies such as

Amazon EC2, Google App Engine, and Salesforce.com have

dedicated numerous large data centers to the managing of

users’ data. This allows users to freely scale and shrink their

rented resources with low cost and little management

burden. Security, privacy and data governance are major

concerns of this type of cloud [7,9].

In a private cloud (or internal cloud) the computing

resources are operated exclusively by or for one

organization, and serves users within the business fire-wall

[7, 9]. They may be managed by the organization itself or by

a CSP. The owner of the private cloud is the organization.

Because private clouds can be accessed exclusively by

trusted users inside the organization, they are considered

more secure than public clouds. Scalability for private

clouds is limited to the installed infrastructure dedicated to

the organization. The limited amount of resources available

to private cloud also leads to higher maintenance costs (i.e.

for space, cooling, energy consumption and hardware)

[Cloud types- Jin]. The other two deployment models,

community and hybrid clouds, fall between public and

private clouds [9].

The concept of Community Clouds is derived from the

Grid computing and Volunteer Computing paradigms [7]. In

a community cloud, several organizations that have the same

mission, policy and security requirements share cloud

infrastructure and computing resources [9]. This allows the

organizations to increase their scale while sharing the cost

[7]. Universities and institutes around the world use

educational clouds to provide education and research

services [9]

A hybrid cloud is a combination of a private and a public

cloud. In this deployment model a private cloud is able to

maintain high-level service availability by scaling up their

system with externally provisioned resources from a public

cloud whenever there are workload fluctuations or hardware

failures. Hybrid clouds also allow an enterprise to keep their

critical data and applications amongst trusted users within

their firewall, while hosting less critical data on a public

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 33

cloud [7].

E. Cloud Service Models

Cloud service models are a Service-Oriented-Architecture

(SOA) that describe cloud services at different levels of

abstraction. There are three cloud service models: Software

as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a service (IaaS).

SaaS is based on licensing software use on demand, which

is already installed and running on a cloud platform. These

complete software applications are delivered over the

Internet and are accessed via a web browser. Cloud hosted

software, such as Google Apps, are available on demand on

any client devices that has access to the Internet. Google

Apps has several components: Communication components

(Gmail, Google Talk); Office components (Google

Spreadsheets, Google Docs); Google calendar allows

multiple users to organize events and meetings; Google Web

Pages allows users to easily publish web pages [7]. Unlike

traditional software, SaaS has the advantage that the

customer does not need to buy licenses, install, upgrade,

maintain or run software on his own computer [9]. It has also

other advantages such as multitenant efficiency,

configurability and scalability [9]. Another implementation

of SaaS is Desktop as a Service. It provides a virtualized

desktop-like personal workspace, and sends its image to the

user’s real desktop. This service allows users to access their

own cloud-based desktop from any device. The “Global

Hosted Operating SysTem” (G.ho.st) is a free and complete

Internet-based Virtual Computer (VC) service suite

including a personal desktop, files and applications. Other

examples the of SaaS model are: Salesforce, A2Zapps.com,

Envysion.com, OpenId, Zoho, etc. [7].

Platform as a Service (PaaS) cloud systems provide a

software execution environment that application services can

run on. The environment is not just a pre-installed operating

system but is also integrated with a programming-language-

level platform, which can be used to develop and build

applications for the platform. From the point of view of

PaaS clouds’ users, computing resources are encapsulated

into independent containers, they can develop their own

applications with certain program languages, and APIs are

supported by the container without having to take care of the

resource management or allocation problems such as

automatic scaling and load balancing. In this section we

introduce two typical PaaS : Google App Engine (2010), and

Microsoft Azure (2010).

 Infrastructure as a Service (IaaS) is one of the

“Everything as a Service” trends. IaaS is easier to

understand if we refer it as Hardware as a Service (i.e.

instead of constructing our own server farms, a small firm

could consider paying to use infrastructure provided by

professional enterprises). Companies such as Google,

Microsoft and IBM are involved in offering such services.

Large-scale computer hardware and high computer network

connectivity are essential components of an effective IaaS

[7].

The IaaS is categorized into: (1) Computation as a Service

(CaaS), in which virtual machine based servers are rented

and charged per hour based on the virtual machine capacity

– mainly CPU and RAM size, features of the virtual

machine, OS and deployed software; and (2) Data as a

Service (DaaS), in which unlimited storage space is used to

store the user’s data regardless of its type, charged per

GByte for data size and data transfer. In this section we will

describe some popular IaaS systems such as Amazon EC2

(2010), GoGrid(2010), Amazon S3 [7].

III. PEER-TO-PEER-BASED DATA TRANSFER

A. Peer-to-Peer Networks

P2P networking became well-known in the late 90’s early
2000’s with the popularization of the now infamous web
service Napster. At its peak, there were over 50 million users
on Napster. Because Napster allowed users to exchange
copyrighted data (mainly music) without the copyright
owner’s permission, Napster was shut down by the courts.
Nevertheless, other P2P technologies were developed and
P2P traffic quickly exceeded web traffic. At present,
BitTorrent is the most popular P2P protocol. It is used do
widely to share videos, as well as other content, that it
accounts for a large fraction of all internet traffic.
 According to Kellerer [10], a distributed network
architecture may be called a P2P network if the participants
share a part of their own hardware resources (processing
power, storage capacity, network link capacity, printers, etc).
These resources are accessible by other nodes directly
without passing intermediary entities. The nodes are called
“peers” because all of the participants of the P2P network
can serve as both resource providers and resource requestors
[10]. In a P2P file-sharing network many peers come
together and pool their resources to form a content
distribution system [2].

B. Computer Systems Architecture

Computer systems architecture is divided into centralized
systems and distributed systems. Centralized systems
represent single, non-networked units which include single
and multi-processor machines, and high-end machines, such
as supercomputers and mainframes. Distributed systems are
those in which components located at networked computers
communicate and coordinate their actions only by passing
messages [11].

Distributed systems are in turn divided into the client-
server model and the P2P model. An example of a client-
server model is a CDN, where clients retrieve their resources
from a central server. The client server model can be flat or
hierarchical. In the flat model all clients only communicate
with a single server. In the hierarchical client server model,
each server has its own set of clients, and those servers, in-
turn, are also clients of higher level servers. An example of
the hierarchical model is DNS [11].

The P2P model can be either pure or hybrid. In the pure
model there is no centralized server within the network.
Examples of pure P2P networks are Gnutella and Freenet
[11]. Because there are no servers on which the network can
rely on, peer have to organize themselves into a coherent
architecture to accomplish the task of content delivery [2].
In a hybrid P2P model, a central sever is used to provide
meta-information to peers about the identity/address of other

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 34

peers in the network, with whom they want to establish a
direct P2P communication. There is also an intermediary
P2P model that sonsists of two tiers of peers: ordinary peers
and SuperPeers (or SuperNodes) [11]. The SuperPeers are
ordinary machines that have high speed internet connection.
Both ordinary machines and SuperPeers store IP addresses,
but SuperPeers have a larger amount of addresses stored on
their systems . Topology-wise, this intermediary P2P model
is also classified as hybrid. Examples of this type of P2P
model are FastTrack, Kazaa and Skype. Other examples of
the hybrid P2P model are Instant messaging applications
such as Whatsapp, Viber, etc.

C. Characteristics of P2P systems

According to the Intel P2P working group, P2P is “The
sharing of computer resources and services by direct
exchange between systems” [12]. This gives P2P systems
several characteristics:

1. Scalability: there is no algorithmic, or technical limitation
of the size of the system, e.g. the complexity of the system
should be somewhat constant regardless of number of nodes
in the system [12]. In centralized systems, such as client
server, scalability is limited by the capacity of the central
server itself and by the amount of centralized operations it
needs to perform[11].

2. Reliability: The malfunction on any given node will not
effect the whole system (or maybe even any other nodes).

3. Anonimity: there are six popular techniques employed by
P2P networks in order to insure anonymity of users:
Multicasting; Spoofing address of sender; Identity spoofing;
Covert paths; Intractable aliases; Non-voluntary placement.

4. Shared Cost of Ownership: Shared ownership reduces the
cost of owning the systems and the content, and the cost of
maintaining them [11]

5. Decentralization: In traditional centralized client-server
models (CDNs or Clouds) information is stored on and
distributed from centrally located servers. Although a central
topology is useful for certain applications and tasks
(granting access rights and security), the whole system is
vulnerable to interruption of service and bottlenecks if the
central server is corrupted. One of the more powerful ideas
of decentralization is the emphasis on the users' ownership
and control of data and resources. In a fully decentralized
system, every peer is an equal participant. This makes the
implementation of the P2P models difficult in practice
because there is no centralized server with a global view of
all the peers in the network or the files they provide. This is
the reason why many P2P file systems are built as hybrid
approaches as in the case of Napster, where there is a
centralized directory of the files but the nodes download
files directly from their peers

IV. WEBRTC

WebRTC is a newly developing standard technology that

will allow web browsers to capture video and audion streams

without the use of additional plugins and to communicate

with other WebRTC-enabled web browsers in a P2P fashion

[13].

 Traditional web browsers only support the viewing of

rich text and images. Third-party browser plugins such as

adobe Flash and Microsoft Silverlight have to be installed in

order for the browsers to support video and audio [13]. In

October 2014, the hypertext markup language specification,

HTML5, was given recommendation status (i.e. finalized) by

the W3C. HTML5 adds support for playing video and audio

without the presence of third-party browser plugins [13].

 Classic web browsers are only able to view content

located on remote servers. They lack the capability to

capture audio or video input from a microphone or camera

for the purpose of transferring that data to other clients or

servers. Although there are third-party plugins that provide

this functionality, these plugins are prone to security flaws

[13]. Plugins may also lead to compatibility and

performance issues, or they may be unavailable on certain

devices or platforms [13]. Additionally, using classic

browsers to transfer data between clients requires the

presence of a server that relays the data from one client to

the other [13].

 In May 2010, Google purchased the Oslo-based

company Global IP Solutions (GIPS) for $68 million in

order to develop its real-time audio and Internet capabilities.

GIPS developed embedded solutions for transmitting audio

and video data in real time. By using the GIPS technology,

Google was able to develop WebRTC. Mozilla also

contributes to WebRTC’s development. There are two

groups currently involved in the standardization of

WebRTC: W3C, which is standardizing the API’s, and

IETF, which is working on protocols and P2P connections

capability (Webtorial). As of the time of writing, recent

versions of Chrome, Firefox, and Opera support WebRTC in

a browser-specific manner. Because the standards for

WebRTC have not been fully formalized, browsers differ in

their implementation. Thus WebRTC applications require

browser-specific code in order to be run in the three

browsers. Google created a Javascript library that can be

used to deal with issued of interoperability between

browsers [13].

A. WebRTC Architecture

 WebRTC applications are developed on top of a

layered architecture, where the WebAPI sits on top of the

native implementation of WebRTC specific to the browser.

WebAPI is the interface used by web developers when

writing applications that utilize WebRTC. Once the W3C

standard is formalized, there will be one uniform WebAPI

that will be used in all browsers and environments that

support WebRTC. Although the native implementation for

WebRTC may vary amongst the different browsers, they all

should contain the following functional components:

1. Transport Component. In order to establish P2P

connection between clients, the browser needs to implement

various protocols such as: ICE (Interactive Connectivity

Establishment), STUN (Session Traversal Utilities for NAT)

and TURN (Traversal Using Relays around NAT).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 35

2. Video Component. Provides encoding and decoding

procedures by using various codecs. The video component

should also allow for smooth video streams by employing

solutions such as jitter buffers. Browsers should be able to

stream video data from web cams or other video sources.

3. Audio Component- The audio component should

provide codecs for collecting and transferring audio data, as

well as providing additional features such as noise reduction,

echo cancellation, and audio streaming [13].

B. Signaling and NAT Traversal

 One of the primary functions of WebRTC is to

establish P2P connections between clients without the

involvement of web servers. However servers are still

necessary for establishing P2P connections for two reasons:

1) To store the web application that utilizes WebRTC;

2) To initialize sessions between clients.

Thus, WebRTC utilizes a hybrid P2P topology for data

transfer. The Session Description protocol is used to

exchange session descriptions which contain details on the

form and nature of the data to be transmitted. This process is

referred to as Signaling. In WebRTC signaling is can be

performed by any technology, provided that session

descriptions are exchanged. For example, a WebRTC For

example, a WebRTC application that involves VoIP

softphones may want to use SIP for signaling. A chat

application might choose to use XMPP and plain web

applications can use HTTPS . Once the SDP session

descriptions have been exchanged, the browsers of the

clients can establish a P2P connection for data transfer.

Clients may be located behind NATs or firewalls within a

private network. NATs replace the private source and

destination IP addresses with public ones while maintaining

an interal lookup table of the mapping to the original device.

Because of this, devices behind the NAT can communicate

without being aware that the other nodes, with whom it

sharing data, may be located in different networks. In order

to understand how NAT traversal works in WebRTC it is

necessary to describe the different types of NAT and

understand the following protocols involved in NAT

traversal: STUN, TURN, and hole punching. These

protocols are combined to form the ICE protocol [13].

C. Classification of NAT

 In order to describe the classification of NAT we will

employ a hypothetical scenario, where IP addresses and

ports will be represented by variables:

1. A client computer A behind NAT with a private IP

address a

2. A router R with a public IP address r

3. Two STUN servers S1 and S2 with public IP addresses

s1 and s2

4. A public server P with a public IP address p

Packets are modified whenever they pass through a router

by NAT traversal. If a:321 sends a packet to p:90, R will

modify the packet so that it appears to P as if the traffic was

coming from r:x and not a:321 where x is some port number

chosen by R. This involves replacing all occurrences of

a:321 with r:x and remembering the mapping of private IP

address and port to public IP address and port in a NAT

forwarding table. Incoming packets from the server P to the

destination r:x will be edited so that the destination becomes

a:321. To both the client A and the server P, it seems like

they are communicating directly, even though R performs

network address translation. The following NAT types are as

listed [13]:

1. Full-cone NAT- is the least restrictive NAT. R creates a

NAT forwarding table entry the first time A sends a packet

to P. For example, the mapping may be (a:321 -> r:x). Once

this mapping has been established, any server Q can send

data from q:z to r:x and R will forward the packets to a:321,

even if A never contacted Q.

2. Address-restricted-cone NAT- imposes a restriction on

full-cone NAT, in that each port forwarding table entry is

only valid for a specific target IP. For example, a mapping

may be (a:321 -> r:x to p) and only P can send packets to

r:x. Packets sent from other IP addresses are dropped by R.

The port is still unrestricted, meaning that P can send data to

r:x from any port and the data will be forwarded to a:321.

3. Port-restricted-cone NAT- imposes the additional

restriction that only packets coming from the exact IP:port

pair contacted by A will be forwarded. This means R may

create a mapping (a:321 -> r:x to p:90) when A contacted P

on p:90, P can only send data from p:90 to r:x for it to be

forwarded to A. If the server P sends data from any other

port, then R drops the packets.

4. Symmetric NAT- is the most restrictive NAT. Same as

with any other type of NAT, when A contacts P from a:321,

R chooses a port x at random and creates a NAT forwarding

table entry, for example (a:321 -> r:x to p:90). However, if

A establishes another connection to P, even if using the same

private port, i.e. sending data from a:321, R will choose a

second random public port y, creating a second mapping

(a:321 -> r:y to p:90). The public server P can reply to the

packets coming from A via R, since it knows which port has

been used (R replaced all occurrences of a:1234 with r:x or

r:y inside the packet), but P only knows this if it received the

packets coming from R. If P has not received any packets

from R, P does not know the port which R has mapped for

traffic to pass through to A. This condition has important

implications for NAT traversal.

D. STUN

STUN is a protocol which can assist other applications in

performing NAT traversal. It does not perform NAT

traversal by itself. Clients located behind NAT are unaware

of their own public IP address and port, which are handled

by the router. These clients only know their own private IP

address and port. A STUN server can be used by clients

behind NAT to determine their public IP address and port.

STUN servers are placed on the public web and clients

behind NAT can send messages to the STUN server. The

STUN server will then reply with a message containing the

client’s public IP address and port as seen from the STUN

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 36

server. The client may even, to a certain degree, be able to

determine the type of NAT employed by the router by

sending requests to multiple distinct STUN servers. When

sending requests to different STUN servers using the same

private port, the answers of the STUN servers will reflect the

nature of the NAT employed by the router: For example,

assuming a client A has a private IP address and port a:1 and

uses this port to contact STUN servers S1 and S2, it may

occur that both S1 and S2 reply to the request saying that the

public IP address and port are r:9999. However, it may also

happen that the two STUN servers give different replies, for

example r:9999 and r:8888. The latter case would indicate

that symmetric NAT is used by the router, since each

outgoing connection has been assigned another port, even

though A used the same private port to contact both STUN

servers [13].

E. TURN

Another protocol that may be used in NAT traversal is

TURN. TURN employs a publicly known server for clients

behind NAT to connect to. In essence, two clients A and B

both connect to the TURN server in a classical client-server

topology and the TURN server then relays data between A

and B. As such, if TURN is used, the traffic between A and

B is no longer peer-to-peer. TURN can be used as a final

fall-back if all other NAT traversal techniques fail, since

normal client-server connections are possible in all NAT

scenarios. However, relaying the data incurs additional cost.

While STUN servers require very little resources to operate,

TURN servers have high traffic demands, since all traffic

between the peers is relayed through the server [13].

F. Hole Punching

Hole punching is an umbrella term for a variety of

techniques that can be used to perform NAT traversal

between peers. The general mechanism by which it functions

can be described as follows [10]: If A and B are clients

behind NAT routers R1 and R2, A and B first contact STUN

servers to discover their public IP:port pairs. They

subsequently exchange the pairs via a signaling server and

then use the same private ports to contact each other. When

A attempts to contact B, R2 will drop any incoming packet,

because R2’s NAT forwarding table does not contain any

entries that would allow A to contact B. However, in sending

a packet to B, A has caused R1 to create a new mapping, for

example (a:321-> r1:9999 to R2:9999), even though the

packet was eventually dropped when it reached R2. Now, B

can send a packet to r1:9999, causing R2 to create a

mapping, for example (b:5678 -> r2:1111 to R1) as well

and R1 will forward the packet to a:321, because this

mapping exists in R1’s NAT forwarding table. Now, both

routers have created appropriate NAT forwarding table

entries and peer-to-peer communication can take place. This

mechanism usually works for all types of NAT except when

both parties are behind symmetric NAT. When replaying the

scenario above with both A and B behind symmetric NAT, A

would send a packet to B, causing R1 to create a mapping

like (a:321 -> r1:9999 to R2:9999) and R2 would drop the

packet as usual. However, B will still not be able to send a

packet to A because it cannot know which random port R1

has used to create the mapping, since it is almost certainly a

different port other than the one reported by the STUN

server in the first place. In principle, it is possible to traverse

certain symmetric NAT configurations by contacting

multiple echo servers many times to collect a large number

of public IP:port candidate pairs. Given enough samples, it

may be possible to predict the next port chosen by the

router. However, there is no indication that this technique is

used by current WebRTC capable browsers [1].

G. ICE

WebRTC uses ICE, a protocol which utilizes STUN,

TURN and hole punching, to establish a connection between

peers. The procedure can be broken down into the following

steps [1]:

1. Gathering candidates: As a first step, each client

constructs a list of possible IP address and port pairs for

other to connect to. These pairs are called ‘candidates’. The

first and obvious candidate is the local, private IP address

and port. More pairs can be gathered by contacting one or

more STUN servers, who will reply with public IP address

and port pairs. Another candidate can be obtained by

contacting a TURN server. At the end of the gathering

process, the candidate list will contain several pairs.

2. Distributing candidates via the signaling server: The

clients send their candidate lists to the signaling server

which distributes them to the other clients. Now, all clients

know the candidates of the other clients.

3. Connection and NAT traversal: Each client attempts to

connect to other clients using the first candidate in the list. In

case that a target client is not behind NAT, the first

candidate - typically the IP address and port of the client

machine itself, may already be sufficient. If the target client

is behind NAT, the second candidate (returned by a STUN

server and representing the public IP address and port of the

router) may be the correct match. In case that the target

client is behind a restricted NAT, hole punching is employed

by the peers to establish a connection. Should this also fail,

because all clients are behind symmetric NAT, the final

candidate (representing the IP address and port of the

publicly known TURN server) has to be used, and all traffic

will be relayed via the TURN server.

By combining STUN, TURN and hole punching, ICE is

able to penetrate most NAT types, including those where all

peers are behind symmetric NAT. If at least one client is not

behind symmetric NAT, TURN is usually not necessary

because hole punching can be employed in the direction of

the client behind the non-symmetric NAT. In other words,

the client behind non-symmetric NAT can send a packet to

any client behind symmetric NAT, thereby creating a new

entry in the NAT forwarding table, after which the client

behind symmetric NAT is able to contact the client behind

non symmetric NAT. TURN is only necessary when all

participants are behind symmetric NAT [1].

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 37

H. Security and Privacy

All traffic in WebRTC is encrypted using AES in SRTP

for media and DLTS for data transmission. All security

mechanisms are provided by WebRTC in the browser by

default. This is beneficial because it would prevent mistakes

being made by developers when encrypting data [1].

V. COMPARATIVE ANALYSIS OF THE TECHNOLOGIES OF

DATA TRANSFER

A. Client-Server-based data transfer

 The differences between cloud computing and CDNs

may seem unclear as they both can offer remote data storage,

computing and networking capabilities to clients. However,

there are more important differences between the core

functions and capabilities of the two technologies. One of

the main goals of CDNs is to provide end-user proximity to

content by replicating content from the origin to the edge

caches geographically located closer to the end-users

(clients). End-user proximity is not a priority for cloud

services. The main goal of cloud services is to offer online

computing and storage capabilities to clients irrespective of

their geographical location. Cloud servers usually consist of

distributed computing systems located within one or a few

data centers.

Because Cloud computing and CDNs are both based on

the client-server networking architecture, they share

common advantages and disadvantages associated with it

[14].

Advantages of both technologies:

1. Data management is much easier because the files are

in one location. This allows fast backups and efficient error

management. There are multiple levels of permissions,

which can prevent users from doing damage to files.

2. The server hardware is designed to serve requests from

clients quickly. All the data are processed on the server, and

only the results are returned to the client. This reduces the

amount of network traffic between the server and the client

machine, improving network performance.

3. Thin client architectures allow a quick replacement of

defect clients, because all data and applications are on the

server.

Disadvantages of both technologies:

1. Client-Server-Systems are very expensive and need a

lot of maintenance.

2. The server constitutes a single point of failure. If

failures on the server occur, it is possible that the system

suffers heavy delay or completely breaks down, which can

potentially block hundreds of clients from working with their

data or their applications. Within companies high costs

could accumulate due to server downtime.

3. Content stored on third-party servers can be easily

monitored a third-party

CDNs provide end-user proximity to content by storing

replicas of digital content at various locations near the edges

of the internet [15]. By being located closer to clients, CDNs

have the advantage over cloud services of providing them

with faster PLT’s. CDNs also reduces the system failure risk

by providing redirection to many replica servers that contain

the same content. CDNs can provide load balancing between

servers in order to avoid network bottlenecks and, therefore,

ensuring greater performance and QoE (Quality of

Experience) to the end user [16].

 However, there are two main disadvantages of CDNs that

prevent it from being a more widely-used service for data

transfer:

1) expensive construction cost and

2) administration complexity.

The construction of multiple data centers located in

various geographical locations is a very expensive endeavor.

This is why CDNs have been utilized mainly by large

corporations and not at an individual user level. Cloud

services usually provide computing resources located within

one or a few data centers. Thus the cost of utilizing cloud

services is less expensive making them are more appealing

to individual clients or small businesses than CDNs[15].

Many of the advantages and disadvantages associated

with clouds relate to both individual clients and business (or

small groups) in various ways. For businesses, cloud

computing offers a cost-efficient alternative to periodically

purchasing licensing fees for desktop software. Most cloud

service companies offer on-time payment or pay-as-you-go

options. For individual clients who usually don’t prefer to

pay for online services, paying for cloud services might be

viewed as a disadvantage of the technology[14]. Some of the

other advantages for both businesses and individuals are

[14]:

• Almost unlimited storage

• Backup and Recovery

• Automatic software integration

• Easier scalability services for businesses

• Quick deployment of Cloud services throughout the

organization

The cloud also offers easy access to information for

registered users. This can be an advantage for clients

belonging to the same organization, who need to transfer

data between each other. However, it may disadvantageous

to clients who want to exchange data with other clients not

registered to the same cloud [14].

 In spite of the many benefits of cloud computing, there

are also disadvantages associated with it. Technical

limitations of the cloud itself can affect businesses and

individual clients negatively. Cloud computing makes the

function of the business dependent on its connection to the

internet. Loss of internet connection can lead to possible

downtimes. Another disadvantage is inflexibility, where an

organization or individual would be locked into the

proprietary applications or formats of the cloud they use.

Security issues of the cloud relate to the reality that an

organization or individual will be surrendering all of their

sensitive information to a third-party cloud service provider.

In addition, storing information on a cloud could make

companies prone to attacks [14].

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 38

B. Peer-to-Peer-based data transfer

 Both P2P and WebRTC are examples of the P2P

networking architecture. Thus, they share some fo the same

advantages and disadvantages of this networking structure

[17].

Advantages of both technologies:

1. In a pure Peer-to-Peer architecture there is no single

point of failure, that means, if one peer breaks down, the rest

of the peers are still able to communicate.

2. Peer-to-Peer provides the opportunity to take advantage

of unused resources such as processing power for

computations and storage capacity. In Client-Server

architectures, the centralized system bears the majority of

the cost of the system. In Peer-to-Peer, all peers help spread

the cost; each client not only gets service but also provides

service as well.

3. Peer-to-Peer allows to prevent bottleneck such as traffic

overload using a central server architecture, because Peer-to-

Peer can distribute data and balance request across the

internet without using a central server.

4. There is better scalability due to a lack of centralized

control and because most peers interact with each other.

5. Privacy. Content cannot be easily monitored by third-

parties

Disadvantages of both technologies [17]:

1. Today many applications need a high security standard,

which is not satisfied by current Peer-to-Peer solutions.

2. The connections between the peers are normally not

designed for high throughput rates, even if the coverage of

ADSL and Cable modem connections is increasing.

3. A centralized system or a Client-Server system will

work as long as the service provider keeps it up and running.

If peers start to abandon a Peer-to-Peer system, services will

not be available to anyone.

4. P2P networks are not easy to manage and the quality of

service is also a problem. Peers usually perform selfishly,

and will ignore the global benefit

5. Most search engines work best when they can search a

central database rather than launch a meta-search of peers

[14].

This problem is circumvented by the hybrid Peer-to-Peer

architecture.

Although P2P applications and WebRTC share the same

networking capabilities, there is one key difference between

these two technologies. P2P applications require clients to

download additional software and be registered in specific

communities in order to share files with other peers. These

requirements makes it prevents communication to be

established between clients subscribed to different data

transfer applications in an on-demand (or instantaneous

manner). In the case of hybrid P2P apps (such as Whatsapp

or Viber), even if the respective clients share the same

application, they would only be allowed to exchange data

once they are add in each other’s friend’s list. WebRTC

natively embeds P2Pfunctionality into the browser of any

mobile or desktop device. Data exchange between peers

using WebRTC can occur instantaneously without the need

for registration or exchanging of private contact data

between peers.

VI. COMPARISON OF DATA TRANSFER TECHNOLOGIES

 In order to determine which of the four data transfer

technologies is most effective for on-demand data transfer, a

comparative analysis of the technologies will be conducted

using the following criteria:

1. Service capability and scalability of the service

2. Reliability and stability of the service

3. Accessibility- Is a registration process required in order

to use the service?

4. Does additional software need to downloaded in order

to use the service?

5. Cost

6. Content Source Monitor (Privacy)- Can information be

visible to third-parties

7. Is quality of service (QoS) guaranteed?

Table 1 illustrates this.

 CDN Cloud Computing P2P WebRTC

Service Capability
and Scalability

Service capability is
limited and
expansion cost is
higher

Service capability is
limited and
expansion cost is
higher

Service capability
can grow up with
peer node increases
and expansion cost
is lower

Service capability
can grow up with
peer node increases
and expansion cost is
lower

Reliability and
Stability

High reliability,
Good Stability. Can
redirect service to
many replica
servers

Relative reliability
and stability
depends on the
functionality. of the
Cloud Service

Low reliability,
dynamic, and poor
stability dependent
on functionality and
selflessness of peer

Relative reliability
and stability
dependent on
functionality alone
(access to internet)

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 39

Accessibility
(Registration
Required?)

Yes Yes Yes No

Additional Software
required?

No No Yes No

Cost Very Expensive Reasonably Priced
for organizations
and individuals

Free Free

Content Source
Monitor (Privacy)

Can be monitored Can be monitored Difficult to Monitor Difficult to monitor

QoS Guarantee Can be guaranteed
within the
maximum service
capacity.
Dependent on func.
of multiple replica
servers

Can be guaranteed
within the maximum
service capacity.
Dependent on func.
of the localized
cloud server

Best-effort, can’t be
controlled.
Dependent on
functionality,&
Selflessness of
random peers, &
internet connection

Best-effort, can’t be
controlled Dependent
on functionality
alone (internet
connection)

From Table 1 we see that service and scalability are most

optimal with P2P networking and WebRTC technologies.

This is due to the decentralized nature of the P2P-based

networking architecture of these services. In terms of

reliability and stability, CDNs are the most reliable and

stable because it provides content from multiple, readily

available servers. WebRTC is reliable/stable as long as the

communicating parties have access to the internet. Cloud

services are reliable/stable as long as the data center where

the information is stored is functional. P2P networking has

the lowest reliability/stability because they are dependent on

the selflessness of the peers in the network. WebRTC is the

most accessible of the four technologies compared because it

does not require registration in order to be utilized. Both

WebRTC and P2P are free to use, in contrast to CDNs and

Cloud computing. CDN’s are much more expensive than

Clouds, thus they are usually only employed by large

corporations. P2P and WebRTC ensure the most privacy

because information is transferred directly between the

clients and not through a third-party server. Quality of

service (QoS) for CDNs and Clouds is guaranteed within the

maximum service capacity, while for P2P and WebRTC

QoS is guaranteed by the best effort of the peers in the

network.

 From this comparative analysis of the four data transfer

technologies, we can conclude that WebRTC would be the

most effective technology for on-demand data transfer

between individual clients. This is because WebRTC is the

most accessible technology of the four discussed, it is free to

use, it provides the most privacy, and it does not require the

downloading of additional software for utilization.

VII.CASE STUDY

A paramedic arrives at the scene of a patient bitten by a

venomous snake. The paramedic is able to take a picture of

the snake, but cannot properly identify it in order to give the

patient the correct anti-venom. How can the paramedic send

a picture of the snake to the herpetologist instantly? What

will the paramedic do if he either does not know, or does not

have the same messaging application preloaded on his phone

as the herpetologist? How can the paramedic provide the

utmost patient confidentiality while transferring patient

information over the internet?

• Solution: The paramedic should use WebRTC to

transfer the picture to the herpetologist. WebRTC is

embedded in the web browsers of both the paramedic’s and

herpetologist’s device. They do not have to have the same

messaging application installed in order to transfer data with

each other. They both are not required to login to any

accounts, so they can utilize the sevice instantaneously.

WebRTC provides direct P2P data transfer, thus patient

information cannot be monitored by third-parties.

VIII. CONCLUSION

 In this paper the author conducted a comparative

analysis of the existing and newly emerging methods of data

transfer to determine which method would be most effective

for on-demand data transfer between individual mobile

clients. The author proposed several formal criteria for the

comparison of the following methods of data transfer

between mobile web clients were analyzed: CDN, Cloud

Computing, P2P networks, and WebRTC. After describing

the functionality and structure of each method the author was

able to conduct a comparative analysis of these methods

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 1, 2015

 40

based on the criteria listed in Table 1. Based on this analysis

the author concludes that WebRTC is the most effective

method to transfer data on-demand between individual

clients.

The main results of this work have been presented as a

qualification thesis (post-graduate in Open Information

Technologies Lab [18]).

REFERENCES

[1] Werner M. J., Vogt C., Schmidt T. C. Let Our Browsers Socialize:
Building User-centric Content Communities on WebRTC.

[2] Tanenbaum, A.S.: Computer Networks, Prentice Hall, Upper Saddle
River, NJ. 2010.

[3] Bartolini, Novella, Emiliano Casalicchio, and Salvatore Tucci. "A
walk through content delivery networks." Performance Tools and
Applications to Networked Systems. Springer Berlin Heidelberg,
2004. 1-25.

[4] Nygren, Erik, Ramesh K. Sitaraman, and Jennifer Sun. "The akamai
network: a platform for high-performance internet applications."
ACM SIGOPS Operating Systems Review 44.3 (2010): 2-19

[5] Zink, Michael, et al. "Characteristics of YouTube network traffic at a
campus network–measurements, models, and implications."
Computer Networks 53.4 (2009): 501-514.

[6] Foster, Ian, et al. "Cloud computing and grid computing 360-degree
compared."Grid Computing Environments Workshop, 2008. GCE'08.
Ieee, 2008.

[7] Jin, Hai, et al. "Cloud types and services." Handbook of Cloud
Computing. Springer US, 2010, pp. 335-355.

[8] Meng, Xiaoqiao, et al. "Efficient resource provisioning in compute
clouds via vm multiplexing." Proceedings of the 7th international
conference on Autonomic computing. ACM, 2010.

[9] Youssef, Ahmed E. "Exploring Cloud Computing Services and
Applications."Journal of Emerging Trends in Computing and
Information Sciences 3.6 (2012): 838-847.

[10] Schollmeier, Rüdiger. "A Definition of Peer-to-Peer Networking for
the Classification of Peer-to-Peer Architectures and Applications."
Peer-to-Peer Computing, IEEE International Conference on. IEEE
Computer Society, 2001.

[11] Milojicic, Dejan S., et al. "Peer-to-peer computing." (2002).
[12] Ding, Choon Hoong, Sarana Nutanong, and Rajkumar Buyya. "Peer-

to-peer networks for content sharing." Peer-to-Peer Computing: the
Evolution of a Disruptive Technology (2005): 28-65.

[13] Alexandru, Carol. "Impact of WebRTC (P2P in the Browser)."
Internet Economics VIII (2014): 39.

[14] APOSTU, ANCA, et al. "Study on advantages and disadvantages of
Cloud Computing–the advantages of Telemetry Applications in the
Cloud."

[15] Lu, Zhihui, Ye Wang, and Yang Richard Yang. "An analysis and
comparison of CDN-P2P-hybrid content delivery system and model."
Journal of Communications 7.3 (2012): 232-245.

[16] Oliveira, Thiago, and Marcial Fernandez. "Fuzzy Redirection
Algorithm for Content Delivery Network (CDN)." ICN 2013, The
Twelfth International Conference on Networks. 2013.

[17] Maly, Robin Jan, et al. "Comparison of Centralized (Client-Server)
and Decentralized (Peer-to-Peer) Networking." Semester thesis, ETH
Zurich, Zurich, Switzerland (2003): 1-12.

[18] Gur'ev, D. E., D. E. Namiot, and M. A. Shneps. "O
telekommunikacionnyh servisah." International Journal of Open
Information Technologies 2.4 (2014): 13-17.

